Skip to content

⚙️ Provider Configuration Guide

NeuroLink supports multiple AI providers with flexible authentication methods. This guide covers complete setup for all supported providers.

Supported Providers

  • OpenAI - GPT-4o, GPT-4o-mini, GPT-4-turbo
  • Amazon Bedrock - Claude 3.7 Sonnet, Claude 3.5 Sonnet, Claude 3 Haiku
  • Amazon SageMaker - Custom models deployed on SageMaker endpoints
  • Google Vertex AI - Gemini 2.5 Flash, Claude 4.0 Sonnet
  • Google AI Studio - Gemini 1.5 Pro, Gemini 2.0 Flash, Gemini 1.5 Flash
  • Anthropic - Claude 3.5 Sonnet, Claude 3 Opus, Claude 3 Haiku
  • Azure OpenAI - GPT-4, GPT-3.5-Turbo
  • LiteLLM - 100+ models from all providers via proxy server
  • Hugging Face - 100,000+ open source models including DialoGPT, GPT-2, GPT-Neo
  • Ollama - Local AI models including Llama 2, Code Llama, Mistral, Vicuna
  • Mistral AI - Mistral Tiny, Small, Medium, and Large models

🏢 Enterprise Proxy Support

All providers support corporate proxy environments automatically. Simply set environment variables:

export HTTPS_PROXY=http://your-corporate-proxy:port
export HTTP_PROXY=http://your-corporate-proxy:port

No code changes required - NeuroLink automatically detects and uses proxy settings.

For detailed proxy setup → See Enterprise & Proxy Setup Guide

OpenAI Configuration

Basic Setup

export OPENAI_API_KEY="sk-your-openai-api-key"

Optional Configuration

export OPENAI_MODEL="gpt-4o"  # Default model to use

Supported Models

  • gpt-4o (default) - Latest multimodal model
  • gpt-4o-mini - Cost-effective variant
  • gpt-4-turbo - High-performance model

Usage Example

import { AIProviderFactory } from "@juspay/neurolink";

const openai = AIProviderFactory.createProvider("openai", "gpt-4o");
const result = await openai.generate({
  input: { text: "Explain machine learning" },
  temperature: 0.7,
  maxTokens: 500,
  timeout: "30s", // Optional: Override default 30s timeout
});

Timeout Configuration

  • Default Timeout: 30 seconds
  • Supported Formats: Milliseconds (30000), human-readable ('30s', '1m', '5m')
  • Environment Variable: OPENAI_TIMEOUT='45s' (optional)

Amazon Bedrock Configuration

🚨 Critical Setup Requirements

⚠️ IMPORTANT: Anthropic Models Require Inference Profile ARN

For Anthropic Claude models in Bedrock, you MUST use the full inference profile ARN, not simple model names:

# ✅ CORRECT: Use full inference profile ARN
export BEDROCK_MODEL="arn:aws:bedrock:us-east-2:<account_id>:inference-profile/us.anthropic.claude-3-7-sonnet-20250219-v1:0"

# ❌ WRONG: Simple model names cause "not authorized to invoke this API" errors
# export BEDROCK_MODEL="anthropic.claude-3-sonnet-20240229-v1:0"

Basic AWS Credentials

export AWS_ACCESS_KEY_ID="your-access-key"
export AWS_SECRET_ACCESS_KEY="your-secret-key"
export AWS_REGION="us-east-2"

Session Token Support (Development)

For temporary credentials (common in development environments):

export AWS_SESSION_TOKEN="your-session-token"  # Required for temporary credentials

Available Inference Profile ARNs

Replace <account_id> with your AWS account ID:

# Claude 3.7 Sonnet (Latest - Recommended)
BEDROCK_MODEL="arn:aws:bedrock:us-east-2:<account_id>:inference-profile/us.anthropic.claude-3-7-sonnet-20250219-v1:0"

# Claude 3.5 Sonnet
BEDROCK_MODEL="arn:aws:bedrock:us-east-2:<account_id>:inference-profile/us.anthropic.claude-3-5-sonnet-20241022-v2:0"

# Claude 3 Haiku
BEDROCK_MODEL="arn:aws:bedrock:us-east-2:<account_id>:inference-profile/us.anthropic.claude-3-haiku-20240307-v1:0"

Why Inference Profiles?

  • Cross-Region Access: Faster access across AWS regions
  • Better Performance: Optimized routing and response times
  • Higher Availability: Improved model availability and reliability
  • Different Permissions: Separate permission model from base models

Complete Bedrock Configuration

# Required AWS credentials
export AWS_ACCESS_KEY_ID="your-access-key"
export AWS_SECRET_ACCESS_KEY="your-secret-key"
export AWS_REGION="us-east-2"

# Optional: Session token for temporary credentials
export AWS_SESSION_TOKEN="your-session-token"

# Required: Inference profile ARN (not simple model name)
export BEDROCK_MODEL="arn:aws:bedrock:us-east-2:<account_id>:inference-profile/us.anthropic.claude-3-7-sonnet-20250219-v1:0"

# Alternative environment variable names (backward compatibility)
export BEDROCK_MODEL_ID="arn:aws:bedrock:us-east-2:<account_id>:inference-profile/us.anthropic.claude-3-7-sonnet-20250219-v1:0"

Usage Example

import { AIProviderFactory } from "@juspay/neurolink";

const bedrock = AIProviderFactory.createProvider("bedrock");
const result = await bedrock.generate({
  input: { text: "Write a haiku about AI" },
  temperature: 0.8,
  maxTokens: 100,
  timeout: "45s", // Optional: Override default 45s timeout
});

Timeout Configuration

  • Default Timeout: 45 seconds (longer due to cold starts)
  • Supported Formats: Milliseconds (45000), human-readable ('45s', '1m', '2m')
  • Environment Variable: BEDROCK_TIMEOUT='1m' (optional)

Account Setup Requirements

To use AWS Bedrock, ensure your AWS account has:

  1. Bedrock Service Access: Enable Bedrock in your AWS region
  2. Model Access: Request access to Anthropic Claude models
  3. IAM Permissions: Your credentials need bedrock:InvokeModel permissions
  4. Inference Profile Access: Access to the specific inference profiles

IAM Policy Example

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "bedrock:InvokeModel",
        "bedrock:InvokeModelWithResponseStream"
      ],
      "Resource": ["arn:aws:bedrock:*:*:inference-profile/us.anthropic.*"]
    }
  ]
}

Amazon SageMaker Configuration

Amazon SageMaker allows you to use your own custom models deployed on SageMaker endpoints. This provider is perfect for:

  • Custom Model Hosting - Deploy your fine-tuned models
  • Enterprise Compliance - Full control over model infrastructure
  • Cost Optimization - Pay only for inference usage
  • Performance - Dedicated compute resources

Basic AWS Credentials

export AWS_ACCESS_KEY_ID="your-access-key"
export AWS_SECRET_ACCESS_KEY="your-secret-key"
export AWS_REGION="us-east-1"  # Your SageMaker region

SageMaker-Specific Configuration

# Required: Your SageMaker endpoint name
export SAGEMAKER_DEFAULT_ENDPOINT="your-endpoint-name"

# Optional: Timeout and retry settings
export SAGEMAKER_TIMEOUT="30000"      # 30 seconds (default)
export SAGEMAKER_MAX_RETRIES="3"      # Retry attempts (default)

Advanced Model Configuration

# Optional: Model-specific settings
export SAGEMAKER_MODEL="custom-model-name"    # Model identifier
export SAGEMAKER_MODEL_TYPE="custom"          # Model type
export SAGEMAKER_CONTENT_TYPE="application/json"
export SAGEMAKER_ACCEPT="application/json"

Session Token Support (for IAM Roles)

export AWS_SESSION_TOKEN="your-session-token"  # For temporary credentials

Complete SageMaker Configuration

# AWS Credentials
export AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
export AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
export AWS_REGION="us-east-1"

# SageMaker Settings
export SAGEMAKER_DEFAULT_ENDPOINT="my-model-endpoint-2024"
export SAGEMAKER_TIMEOUT="45000"
export SAGEMAKER_MAX_RETRIES="5"

Usage Example

# Test SageMaker endpoint
npx @juspay/neurolink sagemaker test my-endpoint

# Generate text with SageMaker
npx @juspay/neurolink generate "Analyze this data" --provider sagemaker

# Interactive setup
npx @juspay/neurolink sagemaker setup

CLI Commands

# Check SageMaker configuration
npx @juspay/neurolink sagemaker status

# Validate connection
npx @juspay/neurolink sagemaker validate

# Show current configuration
npx @juspay/neurolink sagemaker config

# Performance benchmark
npx @juspay/neurolink sagemaker benchmark my-endpoint

# List available endpoints (requires AWS CLI)
npx @juspay/neurolink sagemaker list-endpoints

Timeout Configuration

Configure request timeouts for SageMaker endpoints:

export SAGEMAKER_TIMEOUT="60000"  # 60 seconds for large models

Prerequisites

  1. SageMaker Endpoint: Deploy a model to SageMaker and get the endpoint name
  2. AWS IAM Permissions: Ensure your credentials have sagemaker:InvokeEndpoint permission
  3. Endpoint Status: Endpoint must be in "InService" status

IAM Policy Example

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["sagemaker:InvokeEndpoint"],
      "Resource": "arn:aws:sagemaker:*:*:endpoint/*"
    }
  ]
}

Environment Variables Reference

Variable Required Default Description
AWS_ACCESS_KEY_ID - AWS access key
AWS_SECRET_ACCESS_KEY - AWS secret key
AWS_REGION us-east-1 AWS region
SAGEMAKER_DEFAULT_ENDPOINT - SageMaker endpoint name
SAGEMAKER_TIMEOUT 30000 Request timeout (ms)
SAGEMAKER_MAX_RETRIES 3 Retry attempts
AWS_SESSION_TOKEN - For temporary credentials

📖 Complete SageMaker Guide

For comprehensive SageMaker setup, advanced features, and production deployment: 📖 Complete SageMaker Integration Guide - Includes:

  • Model deployment examples
  • Cost optimization strategies
  • Enterprise security patterns
  • Multi-model endpoint management
  • Performance testing and monitoring
  • Troubleshooting and debugging

Google Vertex AI Configuration

NeuroLink supports three authentication methods for Google Vertex AI to accommodate different deployment environments:

Best for production environments where you can store service account files securely.

export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"
export GOOGLE_VERTEX_PROJECT="your-project-id"
export GOOGLE_VERTEX_LOCATION="us-central1"

Setup Steps:

  1. Create a service account in Google Cloud Console
  2. Download the service account JSON file
  3. Set the file path in GOOGLE_APPLICATION_CREDENTIALS

Method 2: Service Account JSON String (Good for Containers/Cloud)

Best for containerized environments where file storage is limited.

export GOOGLE_SERVICE_ACCOUNT_KEY='{"type":"service_account","project_id":"your-project",...}'
export GOOGLE_VERTEX_PROJECT="your-project-id"
export GOOGLE_VERTEX_LOCATION="us-central1"

Setup Steps:

  1. Copy the entire contents of your service account JSON file
  2. Set it as a single-line string in GOOGLE_SERVICE_ACCOUNT_KEY
  3. NeuroLink will automatically create a temporary file for authentication

Method 3: Individual Environment Variables (Good for CI/CD)

Best for CI/CD pipelines where individual secrets are managed separately.

export GOOGLE_AUTH_CLIENT_EMAIL="service-account@project.iam.gserviceaccount.com"
export GOOGLE_AUTH_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----\nMIIE..."
export GOOGLE_VERTEX_PROJECT="your-project-id"
export GOOGLE_VERTEX_LOCATION="us-central1"

Setup Steps:

  1. Extract client_email and private_key from your service account JSON
  2. Set them as individual environment variables
  3. NeuroLink will automatically assemble them into a temporary service account file

Authentication Detection

NeuroLink automatically detects and uses the best available authentication method in this order:

  1. File Path (GOOGLE_APPLICATION_CREDENTIALS) - if file exists
  2. JSON String (GOOGLE_SERVICE_ACCOUNT_KEY) - if provided
  3. Individual Variables (GOOGLE_AUTH_CLIENT_EMAIL + GOOGLE_AUTH_PRIVATE_KEY) - if both provided

Complete Vertex AI Configuration

# Required for all methods
export GOOGLE_VERTEX_PROJECT="your-gcp-project-id"

# Optional
export GOOGLE_VERTEX_LOCATION="us-east5"        # Default: us-east5
export VERTEX_MODEL_ID="claude-sonnet-4@20250514"  # Default model

# Choose ONE authentication method:

# Method 1: Service Account File
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"

# Method 2: Service Account JSON String
export GOOGLE_SERVICE_ACCOUNT_KEY='{"type":"service_account","project_id":"your-project","private_key_id":"...","private_key":"-----BEGIN PRIVATE KEY-----\n...","client_email":"...","client_id":"...","auth_uri":"https://accounts.google.com/o/oauth2/auth","token_uri":"https://oauth2.googleapis.com/token","auth_provider_x509_cert_url":"https://www.googleapis.com/oauth2/v1/certs","client_x509_cert_url":"..."}'

# Method 3: Individual Environment Variables
export GOOGLE_AUTH_CLIENT_EMAIL="service-account@your-project.iam.gserviceaccount.com"
export GOOGLE_AUTH_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQC...\n-----END PRIVATE KEY-----"

Usage Example

import { AIProviderFactory } from "@juspay/neurolink";

const vertex = AIProviderFactory.createProvider("vertex", "gemini-2.5-flash");
const result = await vertex.generate({
  input: { text: "Explain quantum computing" },
  temperature: 0.6,
  maxTokens: 800,
  timeout: "1m", // Optional: Override default 60s timeout
});

Timeout Configuration

  • Default Timeout: 60 seconds (longer due to GCP initialization)
  • Supported Formats: Milliseconds (60000), human-readable ('60s', '1m', '2m')
  • Environment Variable: VERTEX_TIMEOUT='90s' (optional)

Supported Models

  • gemini-2.5-flash (default) - Fast, efficient model
  • claude-sonnet-4@20250514 - High-quality reasoning (Anthropic via Vertex AI)

Claude Sonnet 4 via Vertex AI Configuration

NeuroLink provides first-class support for Claude Sonnet 4 through Google Vertex AI. This configuration has been thoroughly tested and verified working.

Working Configuration Example

# ✅ VERIFIED WORKING CONFIGURATION
export GOOGLE_VERTEX_PROJECT="your-project-id"
export GOOGLE_VERTEX_LOCATION="us-east5"
export GOOGLE_AUTH_CLIENT_EMAIL="service-account@your-project.iam.gserviceaccount.com"
export GOOGLE_AUTH_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----
[Your private key content here]
-----END PRIVATE KEY-----"

Performance Metrics (Verified)

  • Generation Response: ~2.6 seconds
  • Health Check: Working status detection
  • Streaming: Fully functional
  • Tool Integration: Ready for MCP tools

Usage Examples

# Generation test
node dist/cli/index.js generate "test" --provider vertex --model claude-sonnet-4@20250514

# Streaming test
node dist/cli/index.js stream "Write a short poem" --provider vertex --model claude-sonnet-4@20250514

# Health check
node dist/cli/index.js status
# Expected: vertex: ✅ Working (2599ms)

Google Cloud Setup Requirements

To use Google Vertex AI, ensure your Google Cloud project has:

  1. Vertex AI API Enabled: Enable the Vertex AI API in your project
  2. Service Account: Create a service account with Vertex AI permissions
  3. Model Access: Ensure access to the models you want to use
  4. Billing Enabled: Vertex AI requires an active billing account

Service Account Permissions

Your service account needs these IAM roles:

  • Vertex AI User or Vertex AI Admin
  • Service Account Token Creator (if using impersonation)

Google AI Studio Configuration

Google AI Studio provides direct access to Google's Gemini models with a simple API key authentication.

Basic Setup

export GOOGLE_AI_API_KEY="AIza-your-google-ai-api-key"

Optional Configuration

export GOOGLE_AI_MODEL="gemini-2.5-pro"  # Default model to use

Supported Models

  • gemini-2.5-pro - Comprehensive, detailed responses for complex tasks
  • gemini-2.5-flash (recommended) - Fast, efficient responses for most tasks

Usage Example

import { AIProviderFactory } from "@juspay/neurolink";

const googleAI = AIProviderFactory.createProvider(
  "google-ai",
  "gemini-2.5-flash",
);
const result = await googleAI.generate({
  input: { text: "Explain the future of AI" },
  temperature: 0.7,
  maxTokens: 1000,
  timeout: "30s", // Optional: Override default 30s timeout
});

Timeout Configuration

  • Default Timeout: 30 seconds
  • Supported Formats: Milliseconds (30000), human-readable ('30s', '1m', '5m')
  • Environment Variable: GOOGLE_AI_TIMEOUT='45s' (optional)

How to Get Google AI Studio API Key

  1. Visit Google AI Studio: Go to aistudio.google.com
  2. Sign In: Use your Google account credentials
  3. Create API Key:
  4. Navigate to the API Keys section
  5. Click Create API Key
  6. Copy the generated key (starts with AIza)
  7. Set Environment: Add to your .env file or export directly

Google AI Studio vs Vertex AI

Feature Google AI Studio Google Vertex AI
Setup Complexity 🟢 Simple (API key only) 🟡 Complex (Service account)
Authentication API key Service account JSON
Free Tier ✅ Generous free limits ❌ Pay-per-use only
Enterprise Features ❌ Limited ✅ Full enterprise support
Model Selection 🎯 Latest Gemini models 🔄 Broader model catalog
Best For Prototyping, small projects Production, enterprise apps

Complete Google AI Studio Configuration

# Required: API key from Google AI Studio (choose one)
export GOOGLE_AI_API_KEY="AIza-your-google-ai-api-key"
# OR
export GOOGLE_GENERATIVE_AI_API_KEY="AIza-your-google-ai-api-key"

# Optional: Default model selection
export GOOGLE_AI_MODEL="gemini-2.5-pro"

Rate Limits and Quotas

Google AI Studio includes generous free tier limits:

  • Free Tier: 15 requests per minute, 1,500 requests per day
  • Paid Usage: Higher limits available with billing enabled
  • Model-Specific: Different models may have different rate limits

Error Handling for Google AI Studio

import { AIProviderFactory } from "@juspay/neurolink";

try {
  const provider = AIProviderFactory.createProvider("google-ai");
  const result = await provider.generate({
    prompt: "Generate a creative story",
    temperature: 0.8,
    maxTokens: 500,
  });
  console.log(result.content);
} catch (error) {
  if (error.message.includes("API_KEY_INVALID")) {
    console.error(
      "Invalid Google AI API key. Check your GOOGLE_AI_API_KEY environment variable.",
    );
  } else if (error.message.includes("QUOTA_EXCEEDED")) {
    console.error("Rate limit exceeded. Wait before making more requests.");
  } else {
    console.error("Google AI Studio error:", error.message);
  }
}

Security Considerations

  • API Key Security: Treat API keys as sensitive credentials
  • Environment Variables: Never commit API keys to version control
  • Rate Limiting: Implement client-side rate limiting for production apps
  • Monitoring: Monitor usage to avoid unexpected charges

LiteLLM Configuration

LiteLLM provides access to 100+ models through a unified proxy server, allowing you to use any AI provider through a single interface.

Prerequisites

  1. Install LiteLLM:
pip install litellm
  1. Start LiteLLM proxy server:
# Basic usage
litellm --port 4000

# With configuration file (recommended)
litellm --config litellm_config.yaml --port 4000

Basic Setup

export LITELLM_BASE_URL="http://localhost:4000"
export LITELLM_API_KEY="sk-anything"  # Optional, any value works

Optional Configuration

export LITELLM_MODEL="openai/gpt-4o-mini"  # Default model to use

Supported Model Formats

LiteLLM uses the provider/model format:

# OpenAI models
openai/gpt-4o
openai/gpt-4o-mini
openai/gpt-4

# Anthropic models
anthropic/claude-3-5-sonnet
anthropic/claude-3-haiku

# Google models
google/gemini-2.0-flash
vertex_ai/gemini-pro

# Mistral models
mistral/mistral-large
mistral/mixtral-8x7b

# And many more...

LiteLLM Configuration File (Optional)

Create litellm_config.yaml for advanced configuration:

model_list:
  - model_name: openai/gpt-4o
    litellm_params:
      model: gpt-4o
      api_key: os.environ/OPENAI_API_KEY

  - model_name: anthropic/claude-3-5-sonnet
    litellm_params:
      model: claude-3-5-sonnet-20241022
      api_key: os.environ/ANTHROPIC_API_KEY

  - model_name: google/gemini-2.0-flash
    litellm_params:
      model: gemini-2.0-flash
      api_key: os.environ/GOOGLE_AI_API_KEY

Usage Example

import { ProviderFactory } from "@juspay/neurolink";

// Create LiteLLM provider with specific model
const litellm = ProviderFactory.createProvider("litellm", "openai/gpt-4o");
const result = await litellm.generate({
  input: { text: "Explain quantum computing" },
  temperature: 0.7,
});

console.log(result.content);

Advanced Features

  • Cost Tracking: Built-in usage and cost monitoring
  • Load Balancing: Automatic failover between providers
  • Rate Limiting: Built-in rate limiting and retry logic
  • Caching: Optional response caching for efficiency

Production Considerations

  • Deployment: Run LiteLLM proxy as a separate service
  • Security: Configure authentication for production environments
  • Scaling: Use Docker/Kubernetes for high-availability deployments
  • Monitoring: Enable logging and metrics collection

Hugging Face Configuration

Basic Setup

export HUGGINGFACE_API_KEY="hf_your_token_here"

Optional Configuration

export HUGGINGFACE_MODEL="microsoft/DialoGPT-medium"  # Default model

Model Selection Strategy

Hugging Face hosts 100,000+ models. Choose based on:

  • Task: text-generation, conversational, code
  • Size: Larger models = better quality but slower
  • License: Check model licenses for commercial use

Rate Limiting

  • Free tier: Limited requests
  • PRO tier: Higher limits
  • Handle 503 errors (model loading) with retry logic

Usage Example

import { AIProviderFactory } from "@juspay/neurolink";

const huggingface = AIProviderFactory.createProvider("huggingface", "gpt2");
const result = await huggingface.generate({
  input: { text: "Explain machine learning" },
  temperature: 0.8,
  maxTokens: 200,
  timeout: "45s", // Optional: Override default 30s timeout
});

Timeout Configuration

  • Default Timeout: 30 seconds
  • Supported Formats: Milliseconds (30000), human-readable ('30s', '1m', '5m')
  • Environment Variable: HUGGINGFACE_TIMEOUT='45s' (optional)
  • Note: Model loading may take additional time on first request
  • microsoft/DialoGPT-medium (default) - Conversational AI
  • gpt2 - Classic GPT-2
  • distilgpt2 - Lightweight GPT-2
  • EleutherAI/gpt-neo-2.7B - Large open model
  • bigscience/bloom-560m - Multilingual model

Getting Started with Hugging Face

  1. Create Account: Visit huggingface.co
  2. Generate Token: Go to Settings → Access Tokens
  3. Create Token: Click "New token" with "read" scope
  4. Set Environment: Export token as HUGGINGFACE_API_KEY

Ollama Configuration

Local Installation Required

Ollama must be installed and running locally.

Installation Steps

  1. macOS:
brew install ollama
# or
curl -fsSL https://ollama.ai/install.sh | sh
  1. Linux:
curl -fsSL https://ollama.ai/install.sh | sh
  1. Windows: Download from ollama.ai

Model Management

# List models
ollama list

# Pull new model
ollama pull llama2

# Remove model
ollama rm llama2

Privacy Benefits

  • 100% Local: No data leaves your machine
  • No API Keys: No authentication required
  • Offline Capable: Works without internet

Usage Example

const ollama = AIProviderFactory.createProvider("ollama", "llama2");
const result = await ollama.generate({
  input: { text: "Write a poem about privacy" },
  temperature: 0.7,
  maxTokens: 300,
  timeout: "10m", // Optional: Override default 5m timeout
});

Timeout Configuration

  • Default Timeout: 5 minutes (longer for local model processing)
  • Supported Formats: Milliseconds (300000), human-readable ('5m', '10m', '30m')
  • Environment Variable: OLLAMA_TIMEOUT='10m' (optional)
  • Note: Local models may need longer timeouts for complex prompts
  • llama2 (default) - Meta's Llama 2
  • codellama - Code-specialized Llama
  • mistral - Mistral 7B
  • vicuna - Fine-tuned Llama
  • phi - Microsoft's small model

Environment Variables

# Optional: Custom Ollama server URL
export OLLAMA_BASE_URL="http://localhost:11434"

# Optional: Default model
export OLLAMA_MODEL="llama2"

Performance Optimization

# Set memory limit
OLLAMA_MAX_MEMORY=8GB ollama serve

# Use specific GPU
OLLAMA_CUDA_DEVICE=0 ollama serve

Mistral AI Configuration

Basic Setup

export MISTRAL_API_KEY="your_mistral_api_key"

European Compliance

  • GDPR compliant
  • Data processed in Europe
  • No training on user data

Model Selection

  • mistral-tiny: Fast responses, basic tasks
  • mistral-small: Balanced choice (default)
  • mistral-medium: Complex reasoning
  • mistral-large: Maximum capability

Cost Optimization

Mistral offers competitive pricing:

  • Tiny: $0.14 / 1M tokens
  • Small: $0.6 / 1M tokens
  • Medium: $2.5 / 1M tokens
  • Large: $8 / 1M tokens

Usage Example

const mistral = AIProviderFactory.createProvider("mistral", "mistral-small");
const result = await mistral.generate({
  input: { text: "Translate to French: Hello world" },
  temperature: 0.3,
  maxTokens: 100,
  timeout: "30s", // Optional: Override default 30s timeout
});

Timeout Configuration

  • Default Timeout: 30 seconds
  • Supported Formats: Milliseconds (30000), human-readable ('30s', '1m', '5m')
  • Environment Variable: MISTRAL_TIMEOUT='45s' (optional)

Getting Started with Mistral AI

  1. Create Account: Visit mistral.ai
  2. Get API Key: Navigate to API Keys section
  3. Generate Key: Create new API key
  4. Add Billing: Set up payment method

Environment Variables

# Required: API key
export MISTRAL_API_KEY="your_mistral_api_key"

# Optional: Default model
export MISTRAL_MODEL="mistral-small"

# Optional: Custom endpoint
export MISTRAL_ENDPOINT="https://api.mistral.ai"

Multilingual Support

Mistral models excel at multilingual tasks:

  • English, French, Spanish, German, Italian
  • Code generation in multiple programming languages
  • Translation between supported languages

Environment File Template

Create a .env file in your project root:

# NeuroLink Environment Configuration

# OpenAI
OPENAI_API_KEY=sk-your-openai-key-here
OPENAI_MODEL=gpt-4o

# Amazon Bedrock
AWS_ACCESS_KEY_ID=your-aws-access-key
AWS_SECRET_ACCESS_KEY=your-aws-secret-key
AWS_REGION=us-east-2
AWS_SESSION_TOKEN=your-session-token  # Optional: for temporary credentials
BEDROCK_MODEL=arn:aws:bedrock:us-east-2:<account_id>:inference-profile/us.anthropic.claude-3-7-sonnet-20250219-v1:0

# Google Vertex AI (choose one method)
# Method 1: File path
GOOGLE_APPLICATION_CREDENTIALS=/path/to/your/service-account.json

# Method 2: JSON string (uncomment to use)
# GOOGLE_SERVICE_ACCOUNT_KEY={"type":"service_account","project_id":"your-project",...}

# Method 3: Individual variables (uncomment to use)
# GOOGLE_AUTH_CLIENT_EMAIL=service-account@your-project.iam.gserviceaccount.com
# GOOGLE_AUTH_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----\nYOUR_PRIVATE_KEY_HERE\n-----END PRIVATE KEY-----"

# Required for all Google Vertex AI methods
GOOGLE_VERTEX_PROJECT=your-gcp-project-id
GOOGLE_VERTEX_LOCATION=us-east5
VERTEX_MODEL_ID=claude-sonnet-4@20250514

# Google AI Studio
GOOGLE_AI_API_KEY=AIza-your-googleAiStudio-key
GOOGLE_AI_MODEL=gemini-2.5-pro

# Anthropic
ANTHROPIC_API_KEY=sk-ant-api03-your-key

# Azure OpenAI
AZURE_OPENAI_API_KEY=your-azure-key
AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/"
AZURE_OPENAI_DEPLOYMENT_ID=your-deployment-name

# Hugging Face
HUGGINGFACE_API_KEY=hf_your_token_here
HUGGINGFACE_MODEL=microsoft/DialoGPT-medium  # Optional

# Ollama (Local AI)
OLLAMA_BASE_URL=http://localhost:11434  # Optional
OLLAMA_MODEL=llama2  # Optional

# Mistral AI
MISTRAL_API_KEY=your_mistral_api_key
MISTRAL_MODEL=mistral-small  # Optional

# Application Settings
DEFAULT_PROVIDER=auto
ENABLE_STREAMING=true
ENABLE_FALLBACK=true
NEUROLINK_DEBUG=false

Provider Priority and Fallback

Automatic Provider Selection

NeuroLink automatically selects the best available provider:

import { createBestAIProvider } from "@juspay/neurolink";

// Automatically selects best available provider
const provider = createBestAIProvider();

Provider Priority Order

The default priority order (most reliable first):

  1. OpenAI - Most reliable, fastest setup
  2. Anthropic - High quality, simple setup
  3. Google AI Studio - Free tier, easy setup
  4. Azure OpenAI - Enterprise reliable
  5. Google Vertex AI - Good performance, multiple auth methods
  6. Mistral AI - European compliance, competitive pricing
  7. Hugging Face - Open source variety
  8. Amazon Bedrock - High quality, requires careful setup
  9. Ollama - Local only, no fallback

Custom Priority

import { AIProviderFactory } from "@juspay/neurolink";

// Custom provider with fallback
const { primary, fallback } = AIProviderFactory.createProviderWithFallback(
  "bedrock", // Prefer Bedrock
  "openai", // Fall back to OpenAI
);

try {
  const result = await primary.generate({ input: { text: "Hello" } });
} catch (error) {
  console.log("Primary failed, trying fallback...");
  const result = await fallback.generate({ input: { text: "Hello" } });
}

Environment-Based Selection

// Different providers for different environments
const provider =
  process.env.NODE_ENV === "production"
    ? AIProviderFactory.createProvider("bedrock") // Production: Bedrock
    : AIProviderFactory.createProvider("openai", "gpt-4o-mini"); // Dev: Cheaper model

Testing Provider Configuration

CLI Status Check

# Test all providers
npx @juspay/neurolink status --verbose

# Expected output:
# 🔍 Checking AI provider status...
# ✅ openai: ✅ Working (234ms)
# ❌ bedrock: ❌ Invalid credentials - The security token included in the request is expired
# ⚪ vertex: ⚪ Not configured - Missing environment variables

Programmatic Testing

import { AIProviderFactory } from "@juspay/neurolink";

async function testProviders() {
  const providers = [
    "openai",
    "bedrock",
    "vertex",
    "anthropic",
    "azure",
    "google-ai",
    "huggingface",
    "ollama",
    "mistral",
  ];

  for (const providerName of providers) {
    try {
      const provider = AIProviderFactory.createProvider(providerName);
      const start = Date.now();

      const result = await provider.generate({
        input: { text: "Test" },
        maxTokens: 10,
      });

      console.log(`✅ ${providerName}: Working (${Date.now() - start}ms)`);
    } catch (error) {
      console.log(`❌ ${providerName}: ${error.message}`);
    }
  }
}

testProviders();

Common Configuration Issues

OpenAI Issues

Error: Cannot find API key for OpenAI provider

Solution: Set OPENAI_API_KEY environment variable

Bedrock Issues

Your account is not authorized to invoke this API operation

Solutions:

  1. Use full inference profile ARN (not simple model name)
  2. Check AWS account has Bedrock access
  3. Verify IAM permissions include bedrock:InvokeModel
  4. Ensure model access is enabled in your AWS region

Vertex AI Issues

Cannot find package '@google-cloud/vertexai'

Solution: Install peer dependency: npm install @google-cloud/vertexai

Authentication failed

Solutions:

  1. Verify service account JSON is valid
  2. Check project ID is correct
  3. Ensure Vertex AI API is enabled
  4. Verify service account has proper permissions

Security Best Practices

Environment Variables

  • Never commit API keys to version control
  • Use different keys for development/staging/production
  • Rotate keys regularly
  • Use minimal permissions for service accounts

AWS Security

  • Use IAM roles instead of access keys when possible
  • Enable CloudTrail for audit logging
  • Use VPC endpoints for additional security
  • Implement resource-based policies

Google Cloud Security

  • Use service account keys with minimal permissions
  • Enable audit logging
  • Use VPC Service Controls for additional isolation
  • Rotate service account keys regularly

General Security

  • Use environment-specific configurations
  • Implement rate limiting in your applications
  • Monitor usage and costs
  • Use HTTPS for all API communications

← Back to Main README | Next: API Reference →