📚 API Reference¶
Complete reference for NeuroLink's TypeScript API.
Core Functions¶
createBestAIProvider(requestedProvider?, modelName?)
¶
Creates the best available AI provider based on environment configuration and provider availability. All providers inherit from BaseProvider and include built-in tool support.
Parameters:
requestedProvider
(optional): Preferred provider name ('openai'
,'bedrock'
,'sagemaker'
,'vertex'
,'anthropic'
,'azure'
,'google-ai'
,'huggingface'
,'ollama'
,'mistral'
,'litellm'
, or'auto'
)modelName
(optional): Specific model to use
Returns: AIProvider
instance
Examples:
import { createBestAIProvider } from "@juspay/neurolink";
// Auto-select best available provider
const provider = createBestAIProvider();
// Prefer specific provider
const openaiProvider = createBestAIProvider("openai");
// Prefer specific provider and model
const googleProvider = createBestAIProvider("google-ai", "gemini-2.5-flash");
// Use more comprehensive model for detailed responses
const detailedProvider = createBestAIProvider("google-ai", "gemini-2.5-pro");
// Use LiteLLM proxy for access to 100+ models
const litellmProvider = createBestAIProvider("litellm", "openai/gpt-4o");
const claudeProvider = createBestAIProvider(
"litellm",
"anthropic/claude-3-5-sonnet",
);
// Use Amazon SageMaker for custom deployed models
const sagemakerProvider = createBestAIProvider("sagemaker", "my-custom-model");
createAIProviderWithFallback(primary, fallback, modelName?)
¶
Creates a provider with automatic fallback mechanism.
function createAIProviderWithFallback(
primary: string,
fallback: string,
modelName?: string,
): { primary: AIProvider; fallback: AIProvider };
Parameters:
primary
: Primary provider namefallback
: Fallback provider namemodelName
(optional): Model name for both providers
Returns: Object with primary
and fallback
provider instances
Example:
import { createAIProviderWithFallback } from "@juspay/neurolink";
const { primary, fallback } = createAIProviderWithFallback("bedrock", "openai");
try {
const result = await primary.generate({ input: { text: "Hello AI!" } });
} catch (error) {
console.log("Primary failed, trying fallback...");
const result = await fallback.generate({ input: { text: "Hello AI!" } });
}
BaseProvider Class¶
All AI providers inherit from BaseProvider, which provides unified tool support and consistent behavior across all providers.
Key Features¶
- Automatic Tool Support: All providers include six built-in tools without additional configuration
- Unified Interface: Consistent
generate()
andstream()
methods across all providers - Analytics & Evaluation: Built-in support for usage analytics and quality evaluation
- Error Handling: Standardized error handling and recovery
Built-in Tools¶
Every provider automatically includes these tools:
interface BuiltInTools {
getCurrentTime: {
description: "Get the current date and time";
parameters: { timezone?: string };
};
readFile: {
description: "Read contents of a file";
parameters: { path: string };
};
listDirectory: {
description: "List contents of a directory";
parameters: { path: string };
};
calculateMath: {
description: "Perform mathematical calculations";
parameters: { expression: string };
};
writeFile: {
description: "Write content to a file";
parameters: { path: string; content: string };
};
searchFiles: {
description: "Search for files by pattern";
parameters: { pattern: string; path?: string };
};
}
Example Usage¶
// All providers automatically have tool support
const provider = createBestAIProvider("openai");
// Tools are used automatically when appropriate
const result = await provider.generate({
input: { text: "What time is it?" },
});
// Result will use getCurrentTime tool automatically
// Disable tools if needed
const resultNoTools = await provider.generate({
input: { text: "What time is it?" },
disableTools: true,
});
// Result will use training data instead of real-time tools
// LiteLLM Provider - Access 100+ Models
const litellmProvider = createBestAIProvider("litellm");
const litellmResult = await litellmProvider.generate({
input: { text: "Hello from multiple AI models!" },
// Automatically uses configured LiteLLM model (e.g., gemini-2.5-pro, claude-sonnet-4)
});
AIProviderFactory¶
Factory class for creating specific provider instances with BaseProvider inheritance.
createProvider(providerName, modelName?)
¶
Creates a specific provider instance.
Parameters:
providerName
: Provider name ('openai'
,'bedrock'
,'sagemaker'
,'vertex'
,'anthropic'
,'azure'
,'google-ai'
,'huggingface'
,'ollama'
,'mistral'
,'litellm'
)modelName
(optional): Specific model to use
Returns: AIProvider
instance
Examples:
import { AIProviderFactory } from "@juspay/neurolink";
// Create specific providers
const openai = AIProviderFactory.createProvider("openai", "gpt-4o");
const bedrock = AIProviderFactory.createProvider(
"bedrock",
"claude-3-7-sonnet",
);
const sagemaker = AIProviderFactory.createProvider("sagemaker", "my-endpoint");
const vertex = AIProviderFactory.createProvider("vertex", "gemini-2.5-flash");
// LiteLLM Provider - Access multiple models through proxy
const litellm = AIProviderFactory.createProvider("litellm", "gemini-2.5-pro");
const claudeLiteLLM = AIProviderFactory.createProvider(
"litellm",
"claude-sonnet-4",
);
const llamaLiteLLM = AIProviderFactory.createProvider(
"litellm",
"llama4-scout",
);
// Use default models
const defaultOpenAI = AIProviderFactory.createProvider("openai");
createProviderWithFallback(primary, fallback, modelName?)
¶
Creates provider with fallback (same as standalone function).
static createProviderWithFallback(
primary: string,
fallback: string,
modelName?: string
): { primary: AIProvider; fallback: AIProvider }
AIProvider Interface¶
All providers implement the AIProvider
interface with these methods:
interface AIProvider {
generate(options: GenerateOptions): Promise<GenerateResult>;
stream(options: StreamOptions): Promise<StreamResult>; // PRIMARY streaming method
// Legacy compatibility
gen?(options: GenerateOptions): Promise<GenerateResult>;
}
🔗 CLI-SDK Consistency¶
All providers now include method aliases that match CLI command names for consistent developer experience:
generate()
- Primary method for content generation (matchesneurolink generate
CLI command)gen()
- Short alias forgenerate()
(matchesneurolink gen
CLI command)
🆕 NeuroLink Class API¶
addMCPServer(serverId, config)
¶
NEW! Programmatically add MCP servers at runtime for dynamic tool ecosystem management.
async addMCPServer(
serverId: string,
config: {
command: string;
args?: string[];
env?: Record<string, string>;
cwd?: string;
}
): Promise<void>
Parameters:
serverId
: Unique identifier for the MCP serverconfig.command
: Command to execute (e.g., 'npx', 'node')config.args
: Optional command arguments arrayconfig.env
: Optional environment variablesconfig.cwd
: Optional working directory
Examples:
import { NeuroLink } from "@juspay/neurolink";
const neurolink = new NeuroLink();
// Add Bitbucket integration
await neurolink.addMCPServer("bitbucket", {
command: "npx",
args: ["-y", "@nexus2520/bitbucket-mcp-server"],
env: {
BITBUCKET_USERNAME: "your-username",
BITBUCKET_APP_PASSWORD: "your-app-password",
},
});
// Add custom database server
await neurolink.addMCPServer("database", {
command: "node",
args: ["./custom-db-mcp-server.js"],
env: { DB_CONNECTION_STRING: "postgresql://..." },
cwd: "/path/to/server",
});
// Add any MCP-compatible server
await neurolink.addMCPServer("slack", {
command: "npx",
args: ["-y", "@slack/mcp-server"],
env: { SLACK_BOT_TOKEN: "xoxb-..." },
});
Use Cases:
- External service integration (Bitbucket, Slack, Jira)
- Custom tool development
- Dynamic workflow configuration
- Enterprise application toolchain management
getMCPStatus()
¶
Get current MCP server status and statistics.
async getMCPStatus(): Promise<{
totalServers: number;
availableServers: number;
totalTools: number;
}>
getUnifiedRegistry()
¶
Access the unified MCP registry for advanced server management.
These methods have identical signatures and behavior to generate()
.
// All three methods are equivalent:
const result1 = await provider.generate({ input: { text: "Hello" } });
const result2 = await provider.generate({ input: { text: "Hello" } });
const result3 = await provider.gen({ input: { text: "Hello" } });
generate(options)
¶
Generate text content synchronously.
Parameters:
interface GenerateOptions {
input: { text: string };
temperature?: number;
maxTokens?: number;
systemPrompt?: string;
schema?: any; // For structured output
timeout?: number | string; // Timeout in ms or human-readable format (e.g., '30s', '2m', '1h')
disableTools?: boolean; // Disable tool usage for this request
enableAnalytics?: boolean; // Enable usage analytics
enableEvaluation?: boolean; // Enable AI quality scoring
context?: Record<string, any>; // Custom context for analytics
}
Returns:
interface GenerateResult {
content: string;
provider: string;
model: string;
usage?: {
promptTokens: number;
completionTokens: number;
totalTokens: number;
};
responseTime?: number;
// 🆕 NEW: AI Enhancement Features
analytics?: {
provider: string;
model: string;
tokens: { input: number; output: number; total: number };
cost?: number;
responseTime: number;
context?: Record<string, any>;
};
evaluation?: {
relevanceScore: number; // 1-10 scale
accuracyScore: number; // 1-10 scale
completenessScore: number; // 1-10 scale
overallScore: number; // 1-10 scale
alertLevel?: string; // 'none', 'low', 'medium', 'high'
reasoning?: string; // AI reasoning for the evaluation
// Enhanced evaluation fields (when available)
domainAlignment?: number; // 1-10 scale
terminologyAccuracy?: number; // 1-10 scale
toolEffectiveness?: number; // 1-10 scale
alertSeverity?: string; // Legacy field
contextUtilization?: {
conversationUsed: boolean;
toolsUsed: boolean;
domainKnowledgeUsed: boolean;
};
};
}
🆕 Enterprise Configuration Interfaces¶
NeuroLinkConfig
¶
Main configuration interface for enterprise features:
interface NeuroLinkConfig {
providers: ProviderConfig;
performance: PerformanceConfig;
analytics: AnalyticsConfig;
backup: BackupConfig;
validation: ValidationConfig;
}
ExecutionContext
¶
Rich context interface for all MCP operations:
interface ExecutionContext {
sessionId?: string;
userId?: string;
aiProvider?: string;
permissions?: string[];
cacheOptions?: CacheOptions;
fallbackOptions?: FallbackOptions;
metadata?: Record<string, unknown>;
priority?: "low" | "normal" | "high";
timeout?: number;
retries?: number;
correlationId?: string;
requestId?: string;
userAgent?: string;
clientVersion?: string;
environment?: string;
}
ToolInfo
¶
Comprehensive tool metadata interface:
interface ToolInfo {
name: string;
description?: string;
serverId?: string;
category?: string;
version?: string;
parameters?: unknown;
capabilities?: string[];
lastUsed?: Date;
usageCount?: number;
averageExecutionTime?: number;
}
ConfigUpdateOptions
¶
Flexible configuration update options:
interface ConfigUpdateOptions {
createBackup?: boolean;
validateBeforeUpdate?: boolean;
mergeStrategy?: "replace" | "merge" | "deep-merge";
backupRetention?: number;
onValidationError?: (errors: ValidationError[]) => void;
onBackupCreated?: (backupPath: string) => void;
}
McpRegistry
¶
Registry interface with optional methods for maximum flexibility:
interface McpRegistry {
registerServer?(serverId: string, config?: unknown, context?: ExecutionContext): Promise<void>;
executeTool?<T>(toolName: string, args?: unknown, context?: ExecutionContext): Promise<T>;
listTools?(context?: ExecutionContext): Promise<ToolInfo[]>;
getStats?(): Record<string, { count: number; averageTime: number; totalTime: number }>;
unregisterServer?(serverId: string): Promise<void>;
getServerInfo?(serverId: string): Promise<unknown>;
}
}
🌐 Enterprise Real-time Services API¶
createEnhancedChatService(options)
¶
Creates an enhanced chat service with WebSocket and SSE support for real-time applications.
function createEnhancedChatService(options: {
provider: AIProvider;
enableSSE?: boolean;
enableWebSocket?: boolean;
streamingConfig?: StreamingConfig;
}): EnhancedChatService;
Parameters:
interface EnhancedChatServiceOptions {
provider: AIProvider; // AI provider instance
enableSSE?: boolean; // Enable Server-Sent Events (default: true)
enableWebSocket?: boolean; // Enable WebSocket support (default: false)
streamingConfig?: {
bufferSize?: number; // Buffer size in bytes (default: 8192)
compressionEnabled?: boolean; // Enable compression (default: true)
latencyTarget?: number; // Target latency in ms (default: 100)
};
}
Returns: EnhancedChatService
instance
Example:
import {
createEnhancedChatService,
createBestAIProvider,
} from "@juspay/neurolink";
const provider = await createBestAIProvider();
const chatService = createEnhancedChatService({
provider,
enableWebSocket: true,
enableSSE: true,
streamingConfig: {
bufferSize: 4096,
compressionEnabled: true,
latencyTarget: 50, // 50ms target latency
},
});
// Stream chat with enhanced capabilities
await chatService.streamChat({
prompt: "Generate a story",
onChunk: (chunk) => console.log(chunk),
onComplete: (result) => console.log("Complete:", result),
});
NeuroLinkWebSocketServer
¶
Professional-grade WebSocket server for real-time AI applications.
class NeuroLinkWebSocketServer {
constructor(options?: WebSocketOptions);
joinRoom(connectionId: string, roomId: string): boolean;
broadcastToRoom(roomId: string, message: WebSocketMessage): void;
createStreamingChannel(
connectionId: string,
channelId: string,
): StreamingChannel;
sendMessage(connectionId: string, message: WebSocketMessage): boolean;
on(event: string, handler: Function): void;
}
Constructor Options:
interface WebSocketOptions {
port?: number; // Server port (default: 8080)
maxConnections?: number; // Max concurrent connections (default: 1000)
heartbeatInterval?: number; // Heartbeat interval in ms (default: 30000)
enableCompression?: boolean; // Enable WebSocket compression (default: true)
bufferSize?: number; // Message buffer size (default: 8192)
}
Example:
import { NeuroLinkWebSocketServer } from "@juspay/neurolink";
const wsServer = new NeuroLinkWebSocketServer({
port: 8080,
maxConnections: 1000,
enableCompression: true,
});
// Handle connections
wsServer.on("connection", ({ connectionId, userAgent }) => {
console.log(`New connection: ${connectionId}`);
wsServer.joinRoom(connectionId, "general-chat");
});
// Handle chat messages
wsServer.on("chat-message", async ({ connectionId, message }) => {
// Process with AI and broadcast response
const aiResponse = await processWithAI(message.data.prompt);
wsServer.broadcastToRoom("general-chat", {
type: "ai-response",
data: { text: aiResponse },
});
});
📊 Enterprise Telemetry API¶
initializeTelemetry(config)
¶
Initializes enterprise telemetry with OpenTelemetry integration. Zero overhead when disabled.
Parameters:
interface TelemetryConfig {
serviceName: string; // Service name for telemetry
endpoint?: string; // OpenTelemetry endpoint
enableTracing?: boolean; // Enable distributed tracing (default: true)
enableMetrics?: boolean; // Enable metrics collection (default: true)
enableLogs?: boolean; // Enable log collection (default: true)
samplingRate?: number; // Trace sampling rate 0-1 (default: 0.1)
}
Returns:
interface TelemetryResult {
success: boolean;
tracingEnabled: boolean;
metricsEnabled: boolean;
logsEnabled: boolean;
endpoint?: string;
error?: string;
}
Example:
import { initializeTelemetry } from "@juspay/neurolink";
const telemetry = initializeTelemetry({
serviceName: "my-ai-application",
endpoint: "http://localhost:4318",
enableTracing: true,
enableMetrics: true,
enableLogs: true,
samplingRate: 0.1, // Sample 10% of traces
});
if (telemetry.success) {
console.log("Telemetry initialized successfully");
} else {
console.error("Telemetry initialization failed:", telemetry.error);
}
getTelemetryStatus()
¶
Returns current telemetry status and configuration.
Returns:
interface TelemetryStatus {
enabled: boolean; // Whether telemetry is active
endpoint?: string; // Current endpoint
service: string; // Service name
version: string; // NeuroLink version
features: {
tracing: boolean;
metrics: boolean;
logs: boolean;
};
stats?: {
tracesCollected: number;
metricsCollected: number;
logsCollected: number;
};
}
Example:
import { getTelemetryStatus } from "@juspay/neurolink";
const status = await getTelemetryStatus();
console.log("Telemetry enabled:", status.enabled);
console.log("Service:", status.service);
console.log("Features:", status.features);
if (status.stats) {
console.log("Traces collected:", status.stats.tracesCollected);
console.log("Metrics collected:", status.stats.metricsCollected);
}
🔧 Enhanced Generation Options¶
The base GenerateOptions
interface now supports enterprise features:
interface GenerateOptions {
input: { text: string };
temperature?: number;
maxTokens?: number;
systemPrompt?: string;
schema?: any;
timeout?: number | string;
disableTools?: boolean; // Disable tool usage for this request
// 🆕 NEW: AI Enhancement Features
enableAnalytics?: boolean; // Enable usage analytics
enableEvaluation?: boolean; // Enable AI quality scoring
context?: Record<string, any>; // Custom context for analytics
}
Enhanced Usage Example:
const result = await provider.generate({
input: { text: "Write a business proposal" },
enableAnalytics: true,
enableEvaluation: true,
context: {
userId: "12345",
session: "business-meeting",
department: "sales",
},
});
// Access enhancement data
console.log("📊 Analytics:", result.analytics);
// { provider: 'openai', model: 'gpt-4o', tokens: {...}, cost: 0.02, responseTime: 2340 }
console.log("⭐ Evaluation:", result.evaluation);
// { relevanceScore: 9, accuracyScore: 8, completenessScore: 9, overallScore: 8.7 }
Example:
const result = await provider.generate({
input: { text: "Explain quantum computing in simple terms" },
temperature: 0.7,
maxTokens: 500,
systemPrompt: "You are a helpful science teacher",
});
console.log(result.content);
console.log(`Used ${result.usage?.totalTokens} tokens`);
console.log(`Provider: ${result.provider}, Model: ${result.model}`);
stream(options)
- Recommended for New Code¶
Generate content with streaming responses using future-ready multi-modal interface.
Parameters:
interface StreamOptions {
input: { text: string }; // Current scope: text input (future: multi-modal)
output?: {
format?: "text" | "structured" | "json";
streaming?: {
chunkSize?: number;
bufferSize?: number;
enableProgress?: boolean;
};
};
provider?: string;
model?: string;
temperature?: number;
maxTokens?: number;
timeout?: number | string;
}
Returns:
interface StreamResult {
stream: AsyncIterable<{ content: string }>;
provider?: string;
model?: string;
metadata?: {
streamId?: string;
startTime?: number;
totalChunks?: number;
};
}
Example:
const result = await provider.stream({
input: { text: "Write a story about AI and humanity" },
provider: "openai",
temperature: 0.8,
});
for await (const chunk of result.stream) {
process.stdout.write(chunk.content);
}
Flexible Parameter Support¶
NeuroLink supports both object-based and string-based parameters for convenience:
// Object format (recommended for complex options)
const result1 = await provider.generate({
input: { text: "Hello" },
temperature: 0.7,
maxTokens: 100,
});
// String format (convenient for simple prompts)
const result2 = await provider.generate({ input: { text: "Hello" } });
Using Timeouts¶
NeuroLink supports flexible timeout configuration for all AI operations:
// Numeric milliseconds
const result1 = await provider.generate({
input: { text: "Write a story" },
timeout: 30000, // 30 seconds
});
// Human-readable formats
const result2 = await provider.generate({
input: { text: "Complex calculation" },
timeout: "2m", // 2 minutes
});
// Streaming with longer timeout
const stream = await provider.stream({ input: { text:
prompt: "Generate long content",
timeout: "5m", // 5 minutes for streaming
});
// Provider-specific default timeouts
const provider = createBestAIProvider("ollama"); // Uses 5m default timeout
Supported Timeout Formats:
- Milliseconds:
5000
,30000
- Seconds:
'30s'
,'1.5s'
- Minutes:
'2m'
,'0.5m'
- Hours:
'1h'
,'0.5h'
Usage Examples¶
Basic Usage¶
import { createBestAIProvider } from "@juspay/neurolink";
// Simple text generation
const provider = createBestAIProvider();
const result = await provider.generate({
input: { text: "Write a haiku about coding" },
});
console.log(result.content);
Dynamic Model Usage (v1.8.0+)¶
import { AIProviderFactory, DynamicModelRegistry } from "@juspay/neurolink";
// Initialize factory and registry
const factory = new AIProviderFactory();
const registry = new DynamicModelRegistry();
// Use model aliases for convenient access
const provider1 = await factory.createProvider({
provider: "anthropic",
model: "claude-latest", // Auto-resolves to latest Claude model
});
// Capability-based model selection
const provider2 = await factory.createProvider({
provider: "auto",
capability: "vision", // Automatically selects best vision model
optimizeFor: "cost", // Prefer cost-effective options
});
// Advanced model resolution
const bestCodingModel = await registry.findBestModel({
capability: "code",
maxPrice: 0.005, // Max $0.005 per 1K tokens
provider: "anthropic", // Prefer Anthropic models
});
console.log(
`Selected: ${bestCodingModel.modelId} (${bestCodingModel.reasoning})`,
);
Cost-Optimized Generation¶
import { DynamicModelRegistry } from "@juspay/neurolink";
const registry = new DynamicModelRegistry();
// Get the cheapest model for general tasks
const cheapestModel = await registry.getCheapestModel("general");
const provider = await factory.createProvider({
provider: cheapestModel.provider,
model: cheapestModel.id,
});
// Generate text with cost optimization
const result = await provider.generate({
input: { text: "Summarize the benefits of renewable energy" },
maxTokens: 200, // Control output length for cost
});
console.log(
`Generated with ${result.model} - Cost: $${calculateCost(result.usage, cheapestModel.pricing)}`,
);
Vision Capabilities with Dynamic Selection¶
// Automatically select best vision model
const visionProvider = await factory.createProvider({
capability: "vision",
optimizeFor: "quality", // Prefer highest quality vision model
});
const result = await visionProvider.generate({
input: { text: "Describe what you see in this image" },
images: ["..."], // Base64 image
maxTokens: 500,
});
Function Calling with Smart Model Selection¶
// Select model optimized for function calling
const functionProvider = await factory.createProvider({
capability: "functionCalling",
optimizeFor: "speed", // Fast function execution
});
const result = await functionProvider.generate({
input: { text: "What's the weather in San Francisco?" },
schema: {
type: "object",
properties: {
location: { type: "string" },
temperature: { type: "number" },
conditions: { type: "string" },
},
},
});
console.log(JSON.parse(result.content)); // Structured weather data
Model Discovery and Search¶
import { DynamicModelRegistry } from "@juspay/neurolink";
const registry = new DynamicModelRegistry();
// Search for vision models under $0.001 per 1K tokens
const affordableVisionModels = await registry.searchModels({
capability: "vision",
maxPrice: 0.001,
excludeDeprecated: true,
});
console.log("Affordable Vision Models:");
affordableVisionModels.forEach((model) => {
console.log(`- ${model.name}: $${model.pricing.input}/1K tokens`);
});
// Get all models from a specific provider
const anthropicModels = await registry.searchModels({
provider: "anthropic",
});
// Resolve aliases to actual model IDs
const resolvedModel = await registry.resolveModel("claude-latest");
console.log(`claude-latest resolves to: ${resolvedModel}`);
Streaming with Dynamic Models¶
// Use fastest model for streaming
const streamingProvider = await factory.createProvider({
model: "fastest", // Alias for fastest available model
});
const stream = await streamingProvider.stream({
input: { text:
prompt: "Write a story about space exploration",
maxTokens: 1000,
});
// Process streaming response
for await (const chunk of stream.textStream) {
process.stdout.write(chunk);
}
Provider Fallback with Dynamic Models¶
// Primary: Best quality model, Fallback: Fastest cheap model
const primaryProvider = await factory.createProvider({
provider: "anthropic",
model: "claude-latest",
});
const fallbackProvider = await factory.createProvider({
model: "fastest",
});
try {
const result = await primaryProvider.generate({
input: { text: "Complex reasoning task" },
});
console.log(result.content);
} catch (error) {
console.log("Primary failed, using fallback...");
const result = await fallbackProvider.generate({
input: { text: "Complex reasoning task" },
});
console.log(result.content);
}
Supported Models¶
OpenAI Models¶
type OpenAIModel =
| "gpt-4o" // Default - Latest multimodal model
| "gpt-4o-mini" // Cost-effective variant
| "gpt-4-turbo"; // High-performance model
Amazon Bedrock Models¶
type BedrockModel =
| "claude-3-7-sonnet" // Default - Latest Claude model
| "claude-3-5-sonnet" // Previous generation
| "claude-3-haiku"; // Fast, lightweight model
Note: Bedrock requires full inference profile ARNs in environment variables.
Amazon SageMaker Models¶
type SageMakerModel = string; // Any custom model deployed to SageMaker endpoint
// Model names are user-defined based on endpoint configuration
// Examples:
// - 'my-custom-llm' (your custom fine-tuned model)
// - 'company-domain-model' (domain-specific model)
// - 'multilingual-model' (custom multilingual model)
Note: SageMaker supports any custom model you deploy. Model names are determined by your endpoint configuration and can be any identifier you choose.
Google Vertex AI Models¶
type VertexModel =
| "gemini-2.5-flash" // Default - Fast, efficient
| "claude-sonnet-4@20250514"; // High-quality reasoning
Google AI Studio Models¶
type GoogleAIModel =
| "gemini-2.5-pro" // Default - Latest Gemini Pro
| "gemini-2.5-flash"; // Fast, efficient responses
Azure OpenAI Models¶
type AzureModel = string; // Deployment-specific models
// Common deployments:
// - 'gpt-4o' (default)
// - 'gpt-4-turbo'
// - 'gpt-35-turbo'
Hugging Face Models¶
type HuggingFaceModel = string; // Any model from Hugging Face Hub
// Popular models:
// - 'microsoft/DialoGPT-medium' (default)
// - 'gpt2'
// - 'distilgpt2'
// - 'EleutherAI/gpt-neo-2.7B'
Ollama Models¶
type OllamaModel = string; // Any locally installed model
// Popular models:
// - 'llama2' (default)
// - 'codellama'
// - 'mistral'
// - 'vicuna'
Mistral AI Models¶
type MistralModel =
| "mistral-tiny"
| "mistral-small" // Default
| "mistral-medium"
| "mistral-large";
LiteLLM Models¶
type LiteLLMModel = string; // Uses provider/model format
// Popular models:
// - 'openai/gpt-4o' (default: openai/gpt-4o-mini)
// - 'anthropic/claude-3-5-sonnet'
// - 'google/gemini-2.0-flash'
// - 'mistral/mistral-large'
// - 'meta/llama-3.1-70b'
// Note: Requires LiteLLM proxy server configuration
Dynamic Model System (v1.8.0+)¶
Overview¶
NeuroLink now supports a dynamic model configuration system that replaces static TypeScript enums with runtime-configurable model definitions. This enables:
- ✅ Runtime Model Updates - Add/remove models without code changes
- ✅ Smart Model Resolution - Use aliases like "claude-latest", "best-coding", "fastest"
- ✅ Cost Optimization - Automatic best-value model selection
- ✅ Provider Agnostic - Unified model interface across all providers
- ✅ Type Safety - Zod schema validation for all configurations
Model Configuration Server¶
The dynamic system includes a REST API server for model configurations:
# Start the model configuration server
npm run start:model-server
# Server runs on http://localhost:3001
# API endpoints:
# GET /models - List all models
# GET /models/search?capability=vision - Search by capability
# GET /models/provider/anthropic - Get provider models
# GET /models/resolve/claude-latest - Resolve aliases
Model Configuration Schema¶
Models are defined in config/models.json
with comprehensive metadata:
interface ModelConfig {
id: string; // Unique model identifier
name: string; // Display name
provider: string; // Provider name (anthropic, openai, etc.)
pricing: {
input: number; // Cost per 1K input tokens
output: number; // Cost per 1K output tokens
};
capabilities: string[]; // ['functionCalling', 'vision', 'code']
contextWindow: number; // Maximum context length
deprecated: boolean; // Whether model is deprecated
aliases: string[]; // Alternative names
metadata: {
description: string;
useCase: string; // 'general', 'coding', 'vision', etc.
speed: "fast" | "medium" | "slow";
quality: "high" | "medium" | "low";
};
}
Smart Model Resolution¶
The dynamic system provides intelligent model resolution:
import { DynamicModelRegistry } from "@juspay/neurolink";
const registry = new DynamicModelRegistry();
// Resolve aliases to actual model IDs
await registry.resolveModel("claude-latest"); // → 'claude-3-5-sonnet'
await registry.resolveModel("fastest"); // → 'gpt-4o-mini'
await registry.resolveModel("best-coding"); // → 'claude-3-5-sonnet'
// Find best model for specific criteria
await registry.findBestModel({
capability: "vision",
maxPrice: 0.001, // Maximum cost per 1K tokens
provider: "anthropic", // Optional provider preference
});
// Get models by capability
await registry.getModelsByCapability("functionCalling");
// Cost-optimized model selection
await registry.getCheapestModel("general"); // Cheapest general-purpose model
await registry.getFastestModel("coding"); // Fastest coding model
Dynamic Model Usage in AI Factory¶
The AI factory automatically uses the dynamic model system:
import { AIProviderFactory } from "@juspay/neurolink";
const factory = new AIProviderFactory();
// Use model aliases
const provider1 = await factory.createProvider({
provider: "anthropic",
model: "claude-latest", // Resolves to latest Claude model
});
// Use capability-based selection
const provider2 = await factory.createProvider({
provider: "auto",
model: "best-vision", // Selects best vision model
optimizeFor: "cost", // Prefer cost-effective models
});
// Use direct model IDs (still supported)
const provider3 = await factory.createProvider({
provider: "openai",
model: "gpt-4o", // Direct model specification
});
Configuration Management¶
Environment Variables for Dynamic Models¶
// Model server configuration
MODEL_SERVER_URL?: string // Default: 'http://localhost:3001'
MODEL_CONFIG_PATH?: string // Default: './config/models.json'
ENABLE_DYNAMIC_MODELS?: string // Default: 'true'
// Model selection preferences
DEFAULT_MODEL_PREFERENCE?: 'cost' | 'speed' | 'quality' // Default: 'quality'
FALLBACK_MODEL?: string // Model to use if preferred unavailable
Configuration File Structure¶
The config/models.json
file defines all available models:
{
"models": [
{
"id": "claude-3-5-sonnet",
"name": "Claude 3.5 Sonnet",
"provider": "anthropic",
"pricing": { "input": 0.003, "output": 0.015 },
"capabilities": ["functionCalling", "vision", "code"],
"contextWindow": 200000,
"deprecated": false,
"aliases": ["claude-latest", "best-coding", "claude-sonnet"],
"metadata": {
"description": "Most capable Claude model",
"useCase": "general",
"speed": "medium",
"quality": "high"
}
}
],
"aliases": {
"claude-latest": "claude-3-5-sonnet",
"fastest": "gpt-4o-mini",
"cheapest": "claude-3-haiku",
"best-vision": "gpt-4o",
"best-coding": "claude-3-5-sonnet"
}
}
CLI Integration¶
The CLI provides comprehensive dynamic model management:
# List all models with pricing
neurolink models list
# Search models by capability
neurolink models search --capability functionCalling
neurolink models search --capability vision --max-price 0.001
# Get best model for use case
neurolink models best --use-case coding
neurolink models best --use-case vision
# Resolve aliases
neurolink models resolve anthropic claude-latest
neurolink models resolve google fastest
# Test with dynamic model selection
neurolink generate "Hello" --model best-coding
neurolink generate "Describe this" --capability vision --optimize-cost
Type Definitions for Dynamic Models¶
interface DynamicModelOptions {
// Specify exact model ID
model?: string;
// OR specify requirements for automatic selection
capability?: "functionCalling" | "vision" | "code" | "general";
maxPrice?: number; // Maximum cost per 1K tokens
optimizeFor?: "cost" | "speed" | "quality";
provider?: string; // Preferred provider
}
interface ModelResolutionResult {
modelId: string; // Resolved model ID
provider: string; // Provider name
reasoning: string; // Why this model was selected
pricing: {
input: number;
output: number;
};
capabilities: string[];
}
interface ModelSearchOptions {
capability?: string;
provider?: string;
maxPrice?: number;
minContextWindow?: number;
excludeDeprecated?: boolean;
}
Migration from Static Models¶
For existing code using static model enums, the transition is seamless:
// OLD: Static enum usage (still works)
const provider = await factory.createProvider({
provider: "anthropic",
model: "claude-3-5-sonnet",
});
// NEW: Dynamic model usage (recommended)
const provider = await factory.createProvider({
provider: "anthropic",
model: "claude-latest", // Auto-resolves to latest Claude
});
// ADVANCED: Capability-based selection
const provider = await factory.createProvider({
provider: "auto",
capability: "vision",
optimizeFor: "cost",
});
The dynamic model system maintains backward compatibility while enabling powerful new capabilities for intelligent model selection and cost optimization.
Environment Configuration¶
Required Environment Variables¶
// OpenAI
OPENAI_API_KEY: string
// Amazon Bedrock
AWS_ACCESS_KEY_ID: string
AWS_SECRET_ACCESS_KEY: string
AWS_REGION?: string // Default: 'us-east-2'
AWS_SESSION_TOKEN?: string // For temporary credentials
BEDROCK_MODEL?: string // Inference profile ARN
// Amazon SageMaker
AWS_ACCESS_KEY_ID: string // AWS access key (shared with Bedrock)
AWS_SECRET_ACCESS_KEY: string // AWS secret key (shared with Bedrock)
AWS_REGION?: string // Default: 'us-east-1'
SAGEMAKER_DEFAULT_ENDPOINT: string // SageMaker endpoint name
SAGEMAKER_TIMEOUT?: string // Default: '30000'
SAGEMAKER_MAX_RETRIES?: string // Default: '3'
AWS_SESSION_TOKEN?: string // For temporary credentials
// Google Vertex AI (choose one authentication method)
GOOGLE_APPLICATION_CREDENTIALS?: string // Method 1: File path
GOOGLE_SERVICE_ACCOUNT_KEY?: string // Method 2: JSON string
GOOGLE_AUTH_CLIENT_EMAIL?: string // Method 3a: Individual vars
GOOGLE_AUTH_PRIVATE_KEY?: string // Method 3b: Individual vars
GOOGLE_VERTEX_PROJECT: string // Required for all methods
GOOGLE_VERTEX_LOCATION?: string // Default: 'us-east5'
// Google AI Studio
GOOGLE_AI_API_KEY: string // API key from AI Studio
// Anthropic
ANTHROPIC_API_KEY?: string // Direct Anthropic API
// Azure OpenAI
AZURE_OPENAI_API_KEY?: string // Azure OpenAI API key
AZURE_OPENAI_ENDPOINT?: string // Azure OpenAI endpoint
AZURE_OPENAI_DEPLOYMENT_ID?: string // Deployment ID
// Hugging Face
HUGGINGFACE_API_KEY: string // HF token from huggingface.co
HUGGINGFACE_MODEL?: string // Default: 'microsoft/DialoGPT-medium'
// Ollama (Local)
OLLAMA_BASE_URL?: string // Default: 'http://localhost:11434'
OLLAMA_MODEL?: string // Default: 'llama2'
// Mistral AI
MISTRAL_API_KEY: string // API key from mistral.ai
MISTRAL_MODEL?: string // Default: 'mistral-small'
// LiteLLM (100+ Models via Proxy)
LITELLM_BASE_URL?: string // Default: 'http://localhost:4000'
LITELLM_API_KEY?: string // Default: 'sk-anything'
LITELLM_MODEL?: string // Default: 'openai/gpt-4o-mini'
// Dynamic Model System (v1.8.0+)
MODEL_SERVER_URL?: string // Default: 'http://localhost:3001'
MODEL_CONFIG_PATH?: string // Default: './config/models.json'
ENABLE_DYNAMIC_MODELS?: string // Default: 'true'
DEFAULT_MODEL_PREFERENCE?: 'cost' | 'speed' | 'quality' // Default: 'quality'
FALLBACK_MODEL?: string // Model to use if preferred unavailable
Optional Configuration Variables¶
// Provider preferences
DEFAULT_PROVIDER?: 'auto' | 'openai' | 'bedrock' | 'sagemaker' | 'vertex' | 'anthropic' | 'azure' | 'google-ai' | 'huggingface' | 'ollama' | 'mistral' | 'litellm'
FALLBACK_PROVIDER?: 'openai' | 'bedrock' | 'sagemaker' | 'vertex' | 'anthropic' | 'azure' | 'google-ai' | 'huggingface' | 'ollama' | 'mistral' | 'litellm'
// Feature toggles
ENABLE_STREAMING?: 'true' | 'false'
ENABLE_FALLBACK?: 'true' | 'false'
// Debugging
NEUROLINK_DEBUG?: 'true' | 'false'
LOG_LEVEL?: 'error' | 'warn' | 'info' | 'debug'
Type Definitions¶
Core Types¶
type ProviderName =
| "openai"
| "bedrock"
| "sagemaker"
| "vertex"
| "anthropic"
| "azure"
| "google-ai"
| "huggingface"
| "ollama"
| "mistral"
| "litellm";
interface AIProvider {
generate(options: GenerateOptions): Promise<GenerateResult>;
stream(options: StreamOptions | string): Promise<StreamResult>; // PRIMARY streaming method
}
interface GenerateOptions {
input: { text: string };
temperature?: number; // 0.0 to 1.0, default: 0.7
maxTokens?: number; // Default: 1000
systemPrompt?: string; // System message
schema?: any; // For structured output
timeout?: number | string; // Timeout in ms or human-readable format
disableTools?: boolean; // Disable tool usage
enableAnalytics?: boolean; // Enable usage analytics
enableEvaluation?: boolean; // Enable AI quality scoring
context?: Record<string, any>; // Custom context for analytics
}
interface GenerateResult {
content: string;
provider: string;
model: string;
usage?: TokenUsage;
responseTime?: number; // Milliseconds
analytics?: {
provider: string;
model: string;
tokens: { input: number; output: number; total: number };
cost?: number;
responseTime: number;
context?: Record<string, any>;
};
evaluation?: {
relevanceScore: number; // 1-10 scale
accuracyScore: number; // 1-10 scale
completenessScore: number; // 1-10 scale
overallScore: number; // 1-10 scale
alertLevel?: string; // 'none', 'low', 'medium', 'high'
reasoning?: string; // AI reasoning for the evaluation
};
}
interface TokenUsage {
promptTokens: number;
completionTokens: number;
totalTokens: number;
}
Dynamic Model Types (v1.8.0+)¶
interface ModelConfig {
id: string; // Unique model identifier
name: string; // Display name
provider: string; // Provider name (anthropic, openai, etc.)
pricing: {
input: number; // Cost per 1K input tokens
output: number; // Cost per 1K output tokens
};
capabilities: string[]; // ['functionCalling', 'vision', 'code']
contextWindow: number; // Maximum context length
deprecated: boolean; // Whether model is deprecated
aliases: string[]; // Alternative names
metadata: {
description: string;
useCase: string; // 'general', 'coding', 'vision', etc.
speed: "fast" | "medium" | "slow";
quality: "high" | "medium" | "low";
};
}
interface DynamicModelOptions {
// Specify exact model ID
model?: string;
// OR specify requirements for automatic selection
capability?: "functionCalling" | "vision" | "code" | "general";
maxPrice?: number; // Maximum cost per 1K tokens
optimizeFor?: "cost" | "speed" | "quality";
provider?: string; // Preferred provider
}
interface ModelResolutionResult {
modelId: string; // Resolved model ID
provider: string; // Provider name
reasoning: string; // Why this model was selected
pricing: {
input: number;
output: number;
};
capabilities: string[];
}
interface ModelSearchOptions {
capability?: string;
provider?: string;
maxPrice?: number;
minContextWindow?: number;
excludeDeprecated?: boolean;
}
interface DynamicModelRegistry {
resolveModel(alias: string): Promise<string>;
findBestModel(options: DynamicModelOptions): Promise<ModelResolutionResult>;
getModelsByCapability(capability: string): Promise<ModelConfig[]>;
getCheapestModel(useCase: string): Promise<ModelConfig>;
getFastestModel(useCase: string): Promise<ModelConfig>;
searchModels(options: ModelSearchOptions): Promise<ModelConfig[]>;
getModelConfig(modelId: string): Promise<ModelConfig | null>;
getAllModels(): Promise<ModelConfig[]>;
}
Provider Tool Support Status¶
Due to the factory pattern refactoring, all providers now have consistent tool support through BaseProvider:
Provider | Tool Support | Notes |
---|---|---|
OpenAI | ✅ Full | All tools work correctly |
Google AI | ✅ Full | Excellent tool execution |
Anthropic | ✅ Full | Reliable tool usage |
Azure OpenAI | ✅ Full | Same as OpenAI |
Mistral | ✅ Full | Good tool support |
HuggingFace | ⚠️ Partial | Model sees tools but may describe instead of execute |
Vertex AI | ⚠️ Partial | Tools available but may not execute |
Ollama | ❌ Limited | Requires specific models like gemma3n |
Bedrock | ✅ Full* | Requires valid AWS credentials |
Provider-Specific Types¶
// OpenAI specific
interface OpenAIOptions extends GenerateOptions {
user?: string; // User identifier
stop?: string | string[]; // Stop sequences
topP?: number; // Nucleus sampling
frequencyPenalty?: number; // Reduce repetition
presencePenalty?: number; // Encourage diversity
}
// Bedrock specific
interface BedrockOptions extends GenerateOptions {
region?: string; // AWS region override
inferenceProfile?: string; // Inference profile ARN
}
// SageMaker specific
interface SageMakerOptions extends GenerateOptions {
endpoint?: string; // Override default endpoint
region?: string; // AWS region override
contentType?: string; // Request content type (default: application/json)
accept?: string; // Response accept type (default: application/json)
customAttributes?: string; // Custom attributes for the request
targetModel?: string; // Target model for multi-model endpoints
}
// Vertex AI specific
interface VertexOptions extends GenerateOptions {
project?: string; // GCP project override
location?: string; // GCP location override
safetySettings?: any[]; // Safety filter settings
}
// Google AI Studio specific
interface GoogleAIOptions extends GenerateOptions {
safetySettings?: any[]; // Safety filter settings
generationConfig?: {
// Additional generation settings
stopSequences?: string[];
candidateCount?: number;
topK?: number;
topP?: number;
};
}
// Anthropic specific
interface AnthropicOptions extends GenerateOptions {
stopSequences?: string[]; // Custom stop sequences
metadata?: {
// Usage tracking
userId?: string;
};
}
// Azure OpenAI specific
interface AzureOptions extends GenerateOptions {
deploymentId?: string; // Override deployment
apiVersion?: string; // API version override
user?: string; // User tracking
}
// Hugging Face specific
interface HuggingFaceOptions extends GenerateOptions {
waitForModel?: boolean; // Wait for model to load
useCache?: boolean; // Use cached responses
options?: {
// Model-specific options
useGpu?: boolean;
precision?: string;
};
}
// Ollama specific
interface OllamaOptions extends GenerateOptions {
format?: string; // Response format (e.g., 'json')
context?: number[]; // Conversation context
stream?: boolean; // Enable streaming
raw?: boolean; // Raw mode (no templating)
keepAlive?: string; // Model keep-alive duration
}
// Mistral AI specific
interface MistralOptions extends GenerateOptions {
topP?: number; // Nucleus sampling
randomSeed?: number; // Reproducible outputs
safeMode?: boolean; // Enable safe mode
safePrompt?: boolean; // Add safe prompt
}
Error Handling¶
Error Types¶
class AIProviderError extends Error {
provider: string;
originalError?: Error;
}
class TimeoutError extends AIProviderError {
// Thrown when operation exceeds specified timeout
timeout: number; // Timeout in milliseconds
operation?: string; // Operation that timed out (e.g., 'generate', 'stream')
}
class ConfigurationError extends AIProviderError {
// Thrown when provider configuration is invalid
}
class AuthenticationError extends AIProviderError {
// Thrown when authentication fails
}
class RateLimitError extends AIProviderError {
// Thrown when rate limits are exceeded
retryAfter?: number; // Seconds to wait before retrying
}
class QuotaExceededError extends AIProviderError {
// Thrown when usage quotas are exceeded
}
Error Handling Patterns¶
import {
AIProviderError,
ConfigurationError,
AuthenticationError,
RateLimitError,
TimeoutError,
} from "@juspay/neurolink";
try {
const result = await provider.generate({
prompt: "Hello",
timeout: "30s",
});
} catch (error) {
if (error instanceof TimeoutError) {
console.error(`Operation timed out after ${error.timeout}ms`);
console.error(`Provider: ${error.provider}, Operation: ${error.operation}`);
} else if (error instanceof ConfigurationError) {
console.error("Provider not configured:", error.message);
} else if (error instanceof AuthenticationError) {
console.error("Authentication failed:", error.message);
} else if (error instanceof RateLimitError) {
console.error(`Rate limit exceeded. Retry after ${error.retryAfter}s`);
} else if (error instanceof AIProviderError) {
console.error(`Provider ${error.provider} failed:`, error.message);
} else {
console.error("Unexpected error:", error);
}
}
Advanced Usage Patterns¶
Custom Provider Selection¶
interface ProviderSelector {
selectProvider(available: ProviderName[]): ProviderName;
}
class CustomSelector implements ProviderSelector {
selectProvider(available: ProviderName[]): ProviderName {
// Custom logic for provider selection
if (available.includes("bedrock")) return "bedrock";
if (available.includes("openai")) return "openai";
return available[0];
}
}
// Usage with custom selector
const provider = createBestAIProvider(); // Uses default selection logic
Middleware Support¶
interface AIMiddleware {
beforeRequest?(options: GenerateOptions): GenerateOptions;
afterResponse?(result: GenerateResult): GenerateResult;
onError?(error: Error): Error;
}
class LoggingMiddleware implements AIMiddleware {
beforeRequest(options: GenerateOptions): GenerateOptions {
console.log(
`Generating text for prompt: ${options.prompt.slice(0, 50)}...`,
);
return options;
}
afterResponse(result: GenerateResult): GenerateResult {
console.log(
`Generated ${result.text.length} characters using ${result.provider}`,
);
return result;
}
}
// Note: Middleware is a planned feature for future versions
Batch Processing¶
async function processBatch(prompts: string[], options: GenerateOptions = {}) {
const provider = createBestAIProvider();
const results = [];
for (const prompt of prompts) {
try {
const result = await provider.generate({ ...options, prompt });
results.push({ success: true, ...result });
} catch (error) {
results.push({
success: false,
prompt,
error: error.message,
});
}
// Rate limiting: wait 1 second between requests
await new Promise((resolve) => setTimeout(resolve, 1000));
}
return results;
}
// Usage
const prompts = [
"Explain photosynthesis",
"What is machine learning?",
"Describe the solar system",
];
const results = await processBatch(prompts, {
temperature: 0.7,
maxTokens: 200,
timeout: "45s", // Set reasonable timeout for batch operations
});
Response Caching¶
class CachedProvider implements AIProvider {
private cache = new Map<string, GenerateResult>();
private provider: AIProvider;
constructor(provider: AIProvider) {
this.provider = provider;
}
async generate(options: GenerateOptions): Promise<GenerateResult> {
const key = JSON.stringify(options);
if (this.cache.has(key)) {
return { ...this.cache.get(key)!, fromCache: true };
}
const result = await this.provider.generate(options);
this.cache.set(key, result);
return result;
}
async stream(options: StreamOptions): Promise<StreamResult> {
// Streaming responses are not cached
return this.provider.stream(options);
}
}
// Usage
const baseProvider = createBestAIProvider();
const cachedProvider = new CachedProvider(baseProvider);
TypeScript Integration¶
Type-Safe Configuration¶
interface NeuroLinkConfig {
defaultProvider?: ProviderName;
fallbackProvider?: ProviderName;
defaultOptions?: Partial<GenerateOptions>;
enableFallback?: boolean;
enableStreaming?: boolean;
debug?: boolean;
}
const config: NeuroLinkConfig = {
defaultProvider: "openai",
fallbackProvider: "bedrock",
defaultOptions: {
temperature: 0.7,
maxTokens: 500,
},
enableFallback: true,
debug: false,
};
Generic Provider Interface¶
interface TypedAIProvider<
TOptions = GenerateOptions,
TResult = GenerateResult,
> {
generate(options: TOptions): Promise<TResult>;
}
// Custom typed provider
interface CustomOptions extends GenerateOptions {
customParameter?: string;
}
interface CustomResult extends GenerateResult {
customData?: any;
}
const typedProvider: TypedAIProvider<CustomOptions, CustomResult> =
createBestAIProvider() as any;
MCP (Model Context Protocol) APIs¶
NeuroLink supports MCP through built-in tools and SDK custom tool registration.
✅ Current Status¶
Built-in Tools: ✅ FULLY FUNCTIONAL
- ✅ Time tool - Returns current time in human-readable format
- ✅ Built-in utilities - All system tools working correctly
- ✅ CLI integration - Direct tool execution via CLI
- ✅ Function calling - Tools properly registered and callable
External MCP Tools: 🔍 DISCOVERY PHASE
- ✅ Auto-discovery working - 58+ external servers found
- ✅ Configuration parsing - Resilient JSON parser handles all formats
- ✅ Cross-platform support - macOS, Linux, Windows configurations
- 🔧 Tool activation - External servers discovered but in placeholder mode
- 🔧 Communication protocol - Under active development for full activation
Current Working Examples¶
# ✅ Working: Test built-in tools
neurolink generate "What time is it?" --debug
neurolink generate "What tools do you have access to?" --debug
# ✅ Working: Discover external MCP servers
neurolink mcp discover --format table
# ✅ Working: Build and test system
npm run build && npm run test:run -- test/mcp-comprehensive.test.ts
MCP CLI Commands¶
All MCP functionality is available through the NeuroLink CLI:
# ✅ Working: Built-in tool testing
neurolink generate "What time is it?" --debug
# ✅ Working: Server discovery and management
neurolink mcp discover [--format table|json|yaml] # Auto-discover MCP servers
neurolink mcp list [--status] # List discovered servers with optional status
# 🔧 In Development: Server management and execution
neurolink mcp install <server> # Install popular MCP servers (discovery phase)
neurolink mcp add <name> <command> # Add custom MCP server
neurolink mcp remove <server> # Remove MCP server
neurolink mcp test <server> # Test server connectivity
neurolink mcp tools <server> # List available tools for server
neurolink mcp execute <server> <tool> [args] # Execute specific tool
# Configuration management
neurolink mcp config # Show MCP configuration
neurolink mcp config --reset # Reset MCP configuration
MCP Server Types¶
Built-in Server Support¶
NeuroLink includes built-in installation support for popular MCP servers:
type PopularMCPServer =
| "filesystem" // File operations
| "github" // GitHub integration
| "postgres" // PostgreSQL database
| "puppeteer" // Web browsing
| "brave-search"; // Web search
Additional MCP Servers While not included in the auto-install feature, any MCP-compatible server can be manually added, including:
git
- Git operationsfetch
- Web fetchinggoogle-drive
- Google Drive integrationatlassian
- Jira/Confluence integrationslack
- Slack integration- Any custom MCP server
Use neurolink mcp add <name> <command>
to add these servers manually.
Custom Server Support¶
Add any MCP-compatible server:
# Python server
neurolink mcp add myserver "python /path/to/server.py"
# Node.js server
neurolink mcp add nodeserver "node /path/to/server.js"
# Docker container
neurolink mcp add dockerserver "docker run my-mcp-server"
# SSE (Server-Sent Events) endpoint
neurolink mcp add sseserver "sse://https://api.example.com/mcp"
MCP Configuration¶
Configuration File¶
MCP servers are configured in .mcp-config.json
:
interface MCPConfig {
mcpServers: {
[serverName: string]: {
command: string; // Command to start server
args?: string[]; // Optional command arguments
env?: Record<string, string>; // Environment variables
cwd?: string; // Working directory
timeout?: number; // Connection timeout (ms)
retry?: number; // Retry attempts
enabled?: boolean; // Server enabled status
};
};
global?: {
timeout?: number; // Global timeout
maxConnections?: number; // Max concurrent connections
logLevel?: "debug" | "info" | "warn" | "error";
};
}
Example Configuration¶
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/"],
"timeout": 5000,
"enabled": true
},
"timeout": 8000,
"enabled": false
}
},
"global": {
"timeout": 10000,
"maxConnections": 5,
"logLevel": "info"
}
}
MCP Environment Variables¶
Configure MCP server authentication through environment variables:
# Database connections
MYSQL_CONNECTION_STRING=mysql://user:pass@localhost/db
# Web services
BRAVE_API_KEY=BSA...
GOOGLE_API_KEY=AIza...
MCP Tool Execution¶
Available Tool Categories¶
interface MCPToolCategory {
filesystem: {
read_file: { path: string };
write_file: { path: string; content: string };
list_directory: { path: string };
search_files: { query: string; path?: string };
};
github: {
get_repository: { owner: string; repo: string };
create_issue: { owner: string; repo: string; title: string; body?: string };
list_issues: { owner: string; repo: string; state?: "open" | "closed" };
create_pull_request: {
owner: string;
repo: string;
title: string;
head: string;
base: string;
};
};
database: {
execute_query: { query: string; params?: any[] };
list_tables: {};
describe_table: { table: string };
};
web: {
navigate: { url: string };
click: { selector: string };
type: { selector: string; text: string };
screenshot: { name?: string };
};
}
Tool Execution Examples¶
# File operations
neurolink mcp exec filesystem read_file --params '{"path": "/path/to/file.txt"}'
neurolink mcp exec filesystem list_directory --params '{"path": "/home/user"}'
# GitHub operations
neurolink mcp exec github get_repository --params '{"owner": "juspay", "repo": "neurolink"}'
neurolink mcp exec github create_issue --params '{"owner": "juspay", "repo": "neurolink", "title": "New feature request"}'
# Database operations
neurolink mcp exec postgres execute_query --params '{"query": "SELECT * FROM users LIMIT 10"}'
neurolink mcp exec postgres list_tables --params '{}'
# Web operations
neurolink mcp exec puppeteer navigate --params '{"url": "https://example.com"}'
neurolink mcp exec puppeteer screenshot --params '{"name": "homepage"}'
MCP Demo Server Integration¶
FULLY FUNCTIONAL: NeuroLink's demo server (neurolink-demo/server.js
) includes working MCP API endpoints that you can use immediately:
How to Access These APIs¶
# 1. Start the demo server
cd neurolink-demo
node server.js
# Server runs at http://localhost:9876
# 2. Use any HTTP client to call the APIs
curl http://localhost:9876/api/mcp/servers
curl -X POST http://localhost:9876/api/mcp/install -d '{"serverName": "filesystem"}'
Available MCP API Endpoints¶
// ALL ENDPOINTS WORKING IN DEMO SERVER
interface MCPDemoEndpoints {
"GET /api/mcp/servers": {
// List all configured MCP servers with live status
response: {
servers: Array<{
name: string;
status: "connected" | "disconnected" | "error";
tools: string[];
lastConnected?: string;
}>;
};
};
"POST /api/mcp/install": {
// Install popular MCP servers (filesystem, github, postgres, etc.)
body: { serverName: string };
response: {
success: boolean;
message: string;
configuration?: Record<string, any>;
};
};
"DELETE /api/mcp/servers/:name": {
// Remove MCP servers
params: { name: string };
response: {
success: boolean;
message: string;
};
};
"POST /api/mcp/test/:name": {
// Test server connectivity and get diagnostics
params: { name: string };
response: {
success: boolean;
status: "connected" | "disconnected" | "error";
responseTime?: number;
error?: string;
};
};
"GET /api/mcp/tools/:name": {
// Get available tools for specific server
params: { name: string };
response: {
success: boolean;
tools: Array<{
name: string;
description: string;
parameters: Record<string, any>;
}>;
};
};
"POST /api/mcp/execute": {
// Execute MCP tools via HTTP API
body: {
serverName: string;
toolName: string;
params: Record<string, any>;
};
response: {
success: boolean;
result?: any;
error?: string;
executionTime?: number;
};
};
"POST /api/mcp/servers/custom": {
// Add custom MCP servers
body: {
name: string;
command: string;
options?: Record<string, any>;
};
response: {
success: boolean;
message: string;
};
};
"GET /api/mcp/status": {
// Get comprehensive MCP system status
response: {
summary: {
totalServers: number;
availableServers: number;
cliAvailable: boolean;
};
servers: Record<string, any>;
};
};
"POST /api/mcp/workflow": {
// Execute predefined MCP workflows
body: {
workflowType: string;
description?: string;
servers?: string[];
};
response: {
success: boolean;
workflowType: string;
steps: string[];
result: string;
data: any;
};
};
}
Real-World Usage Examples¶
1. File Operations via HTTP API
# Install filesystem server
curl -X POST http://localhost:9876/api/mcp/install \
-H "Content-Type: application/json" \
-d '{"serverName": "filesystem"}'
# Read a file via HTTP
curl -X POST http://localhost:9876/api/mcp/execute \
-H "Content-Type: application/json" \
-d '{
"serverName": "filesystem",
"toolName": "read_file",
"params": {"path": "index.md"}
}'
# List directory contents
curl -X POST http://localhost:9876/api/mcp/execute \
-H "Content-Type: application/json" \
-d '{
"serverName": "filesystem",
"toolName": "list_directory",
"params": {"path": "."}
}'
2. GitHub Integration via HTTP API
# Install GitHub server
curl -X POST http://localhost:9876/api/mcp/install \
-H "Content-Type: application/json" \
-d '{"serverName": "github"}'
# Get repository information
curl -X POST http://localhost:9876/api/mcp/execute \
-H "Content-Type: application/json" \
-d '{
"serverName": "github",
"toolName": "get_repository",
"params": {"owner": "juspay", "repo": "neurolink"}
}'
3. Web Interface Integration
// JavaScript example for web applications
async function callMCPTool(serverName, toolName, params) {
const response = await fetch("http://localhost:9876/api/mcp/execute", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ serverName, toolName, params }),
});
const result = await response.json();
return result;
}
// Use in your web app
const fileContent = await callMCPTool("filesystem", "read_file", {
path: "/path/to/file.txt",
});
What You Can Use This For¶
1. Web Application MCP Integration
- Build web dashboards that manage MCP servers
- Create file management interfaces
- Integrate GitHub operations into web apps
- Build database administration tools
2. API-First MCP Development
- Test MCP tools without CLI setup
- Prototype MCP integrations quickly
- Build custom MCP management interfaces
- Create automated workflows via HTTP
3. Cross-Platform MCP Access
- Access MCP tools from any programming language
- Build mobile apps that use MCP functionality
- Create browser extensions with MCP features
- Integrate with existing web services
4. Educational and Testing
- Learn MCP concepts through web interface
- Test MCP server configurations
- Debug MCP tool interactions
- Demonstrate MCP capabilities to others
Getting Started¶
# 1. Clone and setup
git clone https://github.com/juspay/neurolink
cd neurolink/neurolink-demo
# 2. Install dependencies
npm install
# 3. Configure environment (optional)
cp .env.example .env
# Add any needed API keys
# 4. Start server
node server.js
# 5. Test APIs
curl http://localhost:9876/api/mcp/status
curl http://localhost:9876/api/mcp/servers
The demo server provides a production-ready MCP HTTP API that you can integrate into any application or service.
MCP Error Handling¶
class MCPError extends Error {
server: string;
tool?: string;
originalError?: Error;
}
class MCPConnectionError extends MCPError {
// Thrown when server connection fails
}
class MCPToolError extends MCPError {
// Thrown when tool execution fails
}
class MCPConfigurationError extends MCPError {
// Thrown when server configuration is invalid
}
// Error handling example
try {
const result = await executeCommand(
'neurolink mcp execute filesystem read_file --path="/nonexistent"',
);
} catch (error) {
if (error instanceof MCPConnectionError) {
console.error(`Failed to connect to server ${error.server}`);
} else if (error instanceof MCPToolError) {
console.error(
`Tool ${error.tool} failed on server ${error.server}: ${error.message}`,
);
}
}
MCP Integration Best Practices¶
Server Management¶
# Test connectivity before using
neurolink mcp test filesystem
# Install servers explicitly
neurolink mcp install github
neurolink mcp install postgres
# Monitor server status
neurolink mcp list --status
Environment Setup¶
Error Recovery¶
# Reset configuration if needed
neurolink mcp config --reset
# Reinstall problematic servers
neurolink mcp remove filesystem
neurolink mcp install filesystem
neurolink mcp test filesystem
Performance Optimization¶
# Limit concurrent connections in config
{
"global": {
"maxConnections": 3,
"timeout": 5000
}
}
# Disable unused servers
{
"mcpServers": {
"heavyServer": {
"command": "...",
"enabled": false
}
}
}