System Architecture¶
Technical architecture overview of NeuroLink's enterprise AI platform, including design patterns, scalability considerations, and integration approaches.
🏗️ High-Level Architecture¶
Core Components¶
graph TB
subgraph "Client Layer"
CLI[CLI Interface]
SDK[SDK/API]
WEB[Web Interface]
end
subgraph "Core Platform"
ROUTER[Provider Router]
FACTORY[Factory Pattern Engine]
ANALYTICS[Analytics Engine]
CACHE[Response Cache]
end
subgraph "Provider Layer"
OPENAI[OpenAI]
GOOGLE[Google AI]
ANTHROPIC[Anthropic]
BEDROCK[AWS Bedrock]
VERTEX[Vertex AI]
end
subgraph "Tools & Extensions"
MCP[MCP Integration]
TOOLS[Built-in Tools]
PLUGINS[Plugin System]
end
CLI --> ROUTER
SDK --> ROUTER
WEB --> ROUTER
ROUTER --> FACTORY
ROUTER --> ANALYTICS
ROUTER --> CACHE
FACTORY --> OPENAI
FACTORY --> GOOGLE
FACTORY --> ANTHROPIC
FACTORY --> BEDROCK
FACTORY --> VERTEX
ROUTER --> MCP
ROUTER --> TOOLS
ROUTER --> PLUGINS
Architecture Principles¶
- Provider Agnostic: Universal interface to multiple AI providers
- Factory Pattern: Consistent creation and management of provider instances
- Fail-Safe Design: Automatic fallback and error recovery
- Horizontal Scaling: Stateless design for cloud deployment
- Observability: Comprehensive monitoring and analytics
- Extensibility: Plugin architecture for custom functionality
🔧 Core Platform Design¶
Provider Router¶
Responsibility: Intelligent request routing and load balancing
interface ProviderRouter {
// Route request to optimal provider
route(request: GenerationRequest): Promise<Provider>;
// Health monitoring
checkHealth(): Promise<ProviderHealth[]>;
// Load balancing
selectProvider(criteria: SelectionCriteria): Provider;
// Failover handling
handleFailover(
failedProvider: Provider,
request: GenerationRequest,
): Promise<Provider>;
}
class ProviderRouterImpl implements ProviderRouter {
private providers: Map<string, Provider>;
private healthMonitor: HealthMonitor;
private loadBalancer: LoadBalancer;
async route(request: GenerationRequest): Promise<Provider> {
// 1. Check provider preferences
// 2. Evaluate health status
// 3. Apply load balancing
// 4. Select optimal provider
return this.loadBalancer.select(this.getHealthyProviders(), request);
}
}
Factory Pattern Engine¶
Responsibility: Consistent provider instance creation and lifecycle management
interface ProviderFactory {
createProvider(type: ProviderType, config: ProviderConfig): Provider;
getProvider(type: ProviderType): Provider;
configureProvider(type: ProviderType, config: ProviderConfig): void;
destroyProvider(type: ProviderType): void;
}
class UniversalProviderFactory implements ProviderFactory {
private providerInstances: Map<ProviderType, Provider> = new Map();
private configurations: Map<ProviderType, ProviderConfig> = new Map();
createProvider(type: ProviderType, config: ProviderConfig): Provider {
switch (type) {
case "openai":
return new OpenAIProvider(config);
case "google-ai":
return new GoogleAIProvider(config);
case "anthropic":
return new AnthropicProvider(config);
// ... other providers
}
}
getProvider(type: ProviderType): Provider {
if (!this.providerInstances.has(type)) {
const config = this.configurations.get(type);
const provider = this.createProvider(type, config);
this.providerInstances.set(type, provider);
}
return this.providerInstances.get(type);
}
}
Analytics Engine¶
Responsibility: Usage tracking, performance monitoring, and insights generation
interface AnalyticsEngine {
track(event: AnalyticsEvent): Promise<void>;
query(criteria: QueryCriteria): Promise<AnalyticsResult>;
generateReport(type: ReportType, timeRange: TimeRange): Promise<Report>;
getMetrics(metricNames: string[]): Promise<MetricValue[]>;
}
class AnalyticsEngineImpl implements AnalyticsEngine {
private storage: AnalyticsStorage;
private aggregator: MetricsAggregator;
private reporter: ReportGenerator;
async track(event: AnalyticsEvent): Promise<void> {
// 1. Validate event data
// 2. Enrich with metadata
// 3. Store in time-series database
// 4. Update real-time aggregates
await this.storage.store(event);
await this.aggregator.update(event);
}
}
🔀 Provider Integration Architecture¶
Universal Provider Interface¶
interface Provider {
readonly name: string;
readonly type: ProviderType;
readonly capabilities: ProviderCapabilities;
// Core functionality
generate(request: GenerationRequest): Promise<GenerationResponse>;
stream(request: StreamRequest): AsyncIterable<StreamChunk>;
// Health and monitoring
checkHealth(): Promise<HealthStatus>;
getMetrics(): Promise<ProviderMetrics>;
// Configuration
configure(config: ProviderConfig): void;
validateConfig(config: ProviderConfig): ValidationResult;
}
abstract class BaseProvider implements Provider {
protected config: ProviderConfig;
protected httpClient: HttpClient;
protected rateLimiter: RateLimiter;
protected retryManager: RetryManager;
constructor(config: ProviderConfig) {
this.config = config;
this.httpClient = new HttpClient(config.httpConfig);
this.rateLimiter = new RateLimiter(config.rateLimit);
this.retryManager = new RetryManager(config.retryConfig);
}
abstract generate(request: GenerationRequest): Promise<GenerationResponse>;
protected async makeRequest<T>(
requestData: any,
transformer: (response: any) => T,
): Promise<T> {
// 1. Apply rate limiting
await this.rateLimiter.acquire();
// 2. Make HTTP request with retries
const response = await this.retryManager.execute(() =>
this.httpClient.post(this.getEndpoint(), requestData),
);
// 3. Transform response
return transformer(response.data);
}
protected abstract getEndpoint(): string;
}
Provider-Specific Implementations¶
class OpenAIProvider extends BaseProvider {
async generate(request: GenerationRequest): Promise<GenerationResponse> {
const openaiRequest = this.transformRequest(request);
return this.makeRequest(openaiRequest, (response) => ({
content: response.choices[0].message.content,
provider: "openai",
model: response.model,
usage: {
promptTokens: response.usage.prompt_tokens,
completionTokens: response.usage.completion_tokens,
totalTokens: response.usage.total_tokens,
},
metadata: {
finishReason: response.choices[0].finish_reason,
logprobs: response.choices[0].logprobs,
},
}));
}
private transformRequest(request: GenerationRequest): any {
return {
model: request.model || this.config.defaultModel,
messages: [{ role: "user", content: request.input.text }],
temperature: request.temperature || 0.7,
max_tokens: request.maxTokens || 1000,
stream: false,
};
}
protected getEndpoint(): string {
return "https://api.openai.com/v1/chat/completions";
}
}
class GoogleAIProvider extends BaseProvider {
async generate(request: GenerationRequest): Promise<GenerationResponse> {
const googleRequest = this.transformRequest(request);
return this.makeRequest(googleRequest, (response) => ({
content: response.candidates[0].content.parts[0].text,
provider: "google-ai",
model: response.model,
usage: {
promptTokens: response.usageMetadata.promptTokenCount,
completionTokens: response.usageMetadata.candidatesTokenCount,
totalTokens: response.usageMetadata.totalTokenCount,
},
metadata: {
finishReason: response.candidates[0].finishReason,
safetyRatings: response.candidates[0].safetyRatings,
},
}));
}
private transformRequest(request: GenerationRequest): any {
return {
contents: [
{
parts: [{ text: request.input.text }],
},
],
generationConfig: {
temperature: request.temperature || 0.7,
maxOutputTokens: request.maxTokens || 1000,
},
};
}
protected getEndpoint(): string {
const model = this.config.defaultModel || "gemini-2.5-pro";
return `https://generativelanguage.googleapis.com/v1beta/models/${model}:generateContent`;
}
}
🔧 MCP (Model Context Protocol) Integration¶
MCP Architecture¶
interface MCPServer {
readonly name: string;
readonly capabilities: MCPCapabilities;
connect(): Promise<void>;
disconnect(): Promise<void>;
listTools(): Promise<MCPTool[]>;
executeTool(toolName: string, parameters: any): Promise<MCPResult>;
}
class MCPRegistry {
private servers: Map<string, MCPServer> = new Map();
private discoveryService: MCPDiscoveryService;
constructor() {
this.discoveryService = new MCPDiscoveryService();
}
async discoverServers(): Promise<MCPServer[]> {
// Discover MCP servers from various sources
const configs = await this.discoveryService.findConfigurations();
const servers = await Promise.all(
configs.map((config) => this.createServer(config)),
);
return servers.filter((server) => server !== null);
}
private async createServer(config: MCPConfig): Promise<MCPServer | null> {
try {
const server = new MCPServerImpl(config);
await server.connect();
this.servers.set(config.name, server);
return server;
} catch (error) {
console.warn(`Failed to connect to MCP server ${config.name}:`, error);
return null;
}
}
}
class MCPToolIntegration {
private registry: MCPRegistry;
constructor(registry: MCPRegistry) {
this.registry = registry;
}
async getAvailableTools(): Promise<ToolDescription[]> {
const servers = Array.from(this.registry.servers.values());
const toolLists = await Promise.all(
servers.map((server) => server.listTools()),
);
return toolLists.flat().map((tool) => ({
name: tool.name,
description: tool.description,
parameters: tool.inputSchema,
server: tool.serverName,
}));
}
async executeTool(toolName: string, parameters: any): Promise<any> {
const server = this.findServerForTool(toolName);
if (!server) {
throw new Error(`Tool ${toolName} not found`);
}
return await server.executeTool(toolName, parameters);
}
}
📊 Data Flow Architecture¶
Request Processing Pipeline¶
sequenceDiagram
participant Client
participant Router
participant Factory
participant Provider
participant Analytics
participant Cache
Client->>Router: GenerationRequest
Router->>Cache: Check cache
Cache-->>Router: Cache miss
Router->>Factory: Get provider
Factory-->>Router: Provider instance
Router->>Provider: Generate content
Provider-->>Router: GenerationResponse
Router->>Analytics: Track event
Router->>Cache: Store response
Router-->>Client: Final response
Analytics Data Pipeline¶
interface AnalyticsDataPipeline {
ingest(event: AnalyticsEvent): Promise<void>;
process(batch: AnalyticsEvent[]): Promise<ProcessedEvent[]>;
store(events: ProcessedEvent[]): Promise<void>;
aggregate(timeWindow: TimeWindow): Promise<AggregatedMetrics>;
}
class StreamingAnalyticsPipeline implements AnalyticsDataPipeline {
private ingestionQueue: Queue<AnalyticsEvent>;
private processor: EventProcessor;
private storage: TimeSeriesStorage;
private aggregator: RealTimeAggregator;
async ingest(event: AnalyticsEvent): Promise<void> {
// Add to queue for async processing
await this.ingestionQueue.enqueue(event);
}
async process(batch: AnalyticsEvent[]): Promise<ProcessedEvent[]> {
return await Promise.all(
batch.map((event) => this.processor.enrich(event)),
);
}
async store(events: ProcessedEvent[]): Promise<void> {
// Store in time-series database
await this.storage.batchInsert(events);
// Update real-time aggregates
await this.aggregator.update(events);
}
}
🚀 Scalability & Performance¶
Horizontal Scaling Design¶
interface ScalabilityManager {
// Auto-scaling based on load
scaleUp(metrics: LoadMetrics): Promise<void>;
scaleDown(metrics: LoadMetrics): Promise<void>;
// Load distribution
distributeLoad(requests: GenerationRequest[]): Promise<ProviderAssignment[]>;
// Resource monitoring
getResourceUtilization(): Promise<ResourceMetrics>;
}
class CloudScalabilityManager implements ScalabilityManager {
private loadBalancer: LoadBalancer;
private resourceMonitor: ResourceMonitor;
private autoScaler: AutoScaler;
async scaleUp(metrics: LoadMetrics): Promise<void> {
if (metrics.avgResponseTime > this.config.maxResponseTime) {
// Scale up provider instances
await this.autoScaler.increaseCapacity({
providers: metrics.bottleneckProviders,
factor: 1.5,
});
}
}
async distributeLoad(
requests: GenerationRequest[],
): Promise<ProviderAssignment[]> {
// Intelligent load distribution based on:
// 1. Provider capacity
// 2. Request complexity
// 3. Historical performance
// 4. Cost optimization
return this.loadBalancer.distribute(requests, {
strategy: "least_loaded",
considerCost: true,
qualityThreshold: 0.8,
});
}
}
Caching Strategy¶
interface CacheStrategy {
get(key: string): Promise<CacheEntry | null>;
set(key: string, value: any, ttl?: number): Promise<void>;
invalidate(pattern: string): Promise<void>;
getStats(): Promise<CacheStats>;
}
class MultiLevelCache implements CacheStrategy {
private l1Cache: MemoryCache; // Fast, small capacity
private l2Cache: RedisCache; // Medium speed, larger capacity
private l3Cache: DatabaseCache; // Slow, unlimited capacity
async get(key: string): Promise<CacheEntry | null> {
// L1 cache check
let entry = await this.l1Cache.get(key);
if (entry) {
return entry;
}
// L2 cache check
entry = await this.l2Cache.get(key);
if (entry) {
// Promote to L1
await this.l1Cache.set(key, entry.value, entry.ttl);
return entry;
}
// L3 cache check
entry = await this.l3Cache.get(key);
if (entry) {
// Promote to L2 and L1
await this.l2Cache.set(key, entry.value, entry.ttl);
await this.l1Cache.set(key, entry.value, Math.min(entry.ttl, 300));
return entry;
}
return null;
}
}
🔐 Security Architecture¶
Authentication & Authorization¶
interface SecurityManager {
authenticate(credentials: Credentials): Promise<AuthResult>;
authorize(user: User, resource: Resource, action: Action): Promise<boolean>;
encrypt(data: any): Promise<EncryptedData>;
decrypt(encryptedData: EncryptedData): Promise<any>;
}
class EnterpriseSecurityManager implements SecurityManager {
private authProvider: AuthenticationProvider;
private authzProvider: AuthorizationProvider;
private encryptionService: EncryptionService;
private auditLogger: AuditLogger;
async authenticate(credentials: Credentials): Promise<AuthResult> {
const result = await this.authProvider.authenticate(credentials);
// Log authentication attempt
await this.auditLogger.log({
action: "authentication",
user: credentials.username,
success: result.success,
timestamp: new Date(),
ip: credentials.clientIP,
});
return result;
}
async authorize(
user: User,
resource: Resource,
action: Action,
): Promise<boolean> {
const authorized = await this.authzProvider.check(user, resource, action);
// Log authorization decision
await this.auditLogger.log({
action: "authorization",
user: user.id,
resource: resource.id,
requestedAction: action,
granted: authorized,
timestamp: new Date(),
});
return authorized;
}
}
API Key Management¶
interface APIKeyManager {
createKey(scope: KeyScope, permissions: Permission[]): Promise<APIKey>;
validateKey(keyValue: string): Promise<KeyValidationResult>;
revokeKey(keyId: string): Promise<void>;
rotateKey(keyId: string): Promise<APIKey>;
}
class SecureAPIKeyManager implements APIKeyManager {
private storage: SecureStorage;
private encryptor: KeyEncryptor;
private rateLimiter: APIRateLimiter;
async createKey(scope: KeyScope, permissions: Permission[]): Promise<APIKey> {
const keyValue = this.generateSecureKey();
const encryptedKey = await this.encryptor.encrypt(keyValue);
const apiKey: APIKey = {
id: generateUUID(),
hashedValue: await this.hashKey(keyValue),
encryptedValue: encryptedKey,
scope,
permissions,
createdAt: new Date(),
expiresAt: this.calculateExpiry(scope),
isActive: true,
};
await this.storage.store(apiKey);
return {
...apiKey,
plainValue: keyValue, // Only returned once
};
}
}
📈 Monitoring & Observability¶
Metrics Collection¶
interface MetricsCollector {
recordMetric(name: string, value: number, tags?: Tags): void;
recordTiming(name: string, duration: number, tags?: Tags): void;
recordCounter(name: string, increment?: number, tags?: Tags): void;
recordGauge(name: string, value: number, tags?: Tags): void;
}
class PrometheusMetricsCollector implements MetricsCollector {
private registry: Registry;
private counters: Map<string, Counter> = new Map();
private histograms: Map<string, Histogram> = new Map();
private gauges: Map<string, Gauge> = new Map();
recordTiming(name: string, duration: number, tags?: Tags): void {
if (!this.histograms.has(name)) {
this.histograms.set(
name,
new Histogram({
name: name,
help: `${name} timing histogram`,
labelNames: Object.keys(tags || {}),
registers: [this.registry],
}),
);
}
const histogram = this.histograms.get(name)!;
histogram.observe(tags || {}, duration);
}
}
Health Monitoring¶
interface HealthMonitor {
checkSystemHealth(): Promise<HealthStatus>;
checkProviderHealth(provider: string): Promise<ProviderHealth>;
getHealthHistory(timeRange: TimeRange): Promise<HealthHistoryEntry[]>;
registerHealthCheck(name: string, check: HealthCheck): void;
}
class ComprehensiveHealthMonitor implements HealthMonitor {
private healthChecks: Map<string, HealthCheck> = new Map();
private storage: HealthStorage;
async checkSystemHealth(): Promise<HealthStatus> {
const checks = Array.from(this.healthChecks.entries());
const results = await Promise.allSettled(
checks.map(([name, check]) => this.executeHealthCheck(name, check)),
);
const overallStatus = this.calculateOverallStatus(results);
await this.storage.store({
timestamp: new Date(),
status: overallStatus,
checks: results.map((result, index) => ({
name: checks[index][0],
status: result.status === "fulfilled" ? result.value : "failed",
error: result.status === "rejected" ? result.reason : null,
})),
});
return overallStatus;
}
}
This architecture provides a robust, scalable foundation for NeuroLink's enterprise AI platform, ensuring reliability, performance, and security at scale.
📚 Related Documentation¶
- Factory Patterns - Implementation patterns
- Development Guide - Development setup
- Testing Strategy - Quality assurance
- Performance Optimization - Monitoring and optimization