Performance Optimization Guide¶
Comprehensive guide for optimizing NeuroLink performance, reducing latency, and maximizing throughput in production environments.
🚀 Quick Performance Wins¶
Immediate Optimizations¶
- Enable Response Caching
const neurolink = new NeuroLink({
caching: {
enabled: true,
ttl: 300000, // 5 minutes
maxSize: 1000,
},
});
- Use Streaming for Long Responses
const stream = await neurolink.stream({
input: { text: "Write a comprehensive report..." },
provider: "anthropic",
});
for await (const chunk of stream) {
console.log(chunk.content); // Process immediately
}
- Implement Request Batching
📊 Performance Monitoring¶
Real-time Metrics¶
import { NeuroLink, PerformanceMonitor } from "@juspay/neurolink";
const neurolink = new NeuroLink({
monitoring: {
enabled: true,
metricsInterval: 30000, // 30 seconds
trackLatency: true,
trackThroughput: true,
trackErrors: true,
},
});
// Get performance insights
const monitor = new PerformanceMonitor(neurolink);
const metrics = await monitor.getMetrics();
console.log("Average Response Time:", metrics.averageLatency);
console.log("Requests per Second:", metrics.throughput);
console.log("Error Rate:", metrics.errorRate);
Performance Dashboard¶
// Setup real-time performance dashboard
const dashboard = new PerformanceDashboard({
refreshInterval: 5000, // 5 seconds
metrics: [
"response_time",
"throughput",
"cache_hit_ratio",
"provider_health",
"error_rate",
"token_usage",
],
});
await dashboard.start();
⚡ Provider Optimization¶
Provider Selection Strategy¶
// Intelligent provider routing
const neurolink = new NeuroLink({
routing: {
strategy: "performance_optimized",
criteria: {
latency: 0.4, // 40% weight
reliability: 0.3, // 30% weight
cost: 0.2, // 20% weight
quality: 0.1, // 10% weight
},
},
});
Response Time Optimization¶
// Provider-specific timeouts
const optimizedConfig = {
providers: {
openai: { timeout: 15000 }, // Fast for simple tasks
anthropic: { timeout: 30000 }, // Balanced
bedrock: { timeout: 45000 }, // Longer for complex reasoning
},
};
Load Balancing¶
// Multi-provider load balancing
const loadBalancer = new ProviderLoadBalancer({
providers: ["openai", "anthropic", "google-ai"],
algorithm: "least_loaded",
healthChecks: {
interval: 30000,
timeout: 5000,
failureThreshold: 3,
},
});
🔧 Advanced Configuration¶
Connection Pooling¶
const neurolink = new NeuroLink({
connectionPool: {
maxConnections: 20,
keepAlive: true,
maxIdleTime: 30000,
retryOnFailure: true,
},
});
Request Optimization¶
// Optimize token usage
const optimizedRequest = {
input: { text: prompt },
maxTokens: calculateOptimalTokens(prompt),
temperature: 0.7,
stopSequences: ["---", "END"],
truncateInput: true,
compressHistory: true,
};
Parallel Processing¶
// Parallel request processing
async function processInParallel(prompts: string[]) {
const chunks = chunkArray(prompts, 5); // Process 5 at a time
for (const chunk of chunks) {
const promises = chunk.map((prompt) =>
neurolink.generate({ input: { text: prompt } }),
);
const results = await Promise.allSettled(promises);
processResults(results);
}
}
🏎️ CLI Performance Optimization¶
Batch Operations¶
# High-performance batch processing
npx @juspay/neurolink batch process \
--input large_dataset.jsonl \
--output results.jsonl \
--parallel 10 \
--chunk-size 100 \
--enable-caching \
--provider-strategy fastest
Parallel Provider Testing¶
# Test multiple providers simultaneously
npx @juspay/neurolink benchmark \
--providers openai,anthropic,google-ai \
--concurrent 3 \
--iterations 10 \
--output benchmark_results.json
Streaming Mode¶
# Enable streaming for immediate output
npx @juspay/neurolink gen "Write a long article" \
--stream \
--provider anthropic \
--no-buffer
📈 Caching Strategies¶
Multi-Level Caching¶
const neurolink = new NeuroLink({
caching: {
levels: {
memory: {
enabled: true,
maxSize: 500, // In-memory cache
ttl: 300000, // 5 minutes
},
redis: {
enabled: true,
host: "localhost",
port: 6379,
ttl: 3600000, // 1 hour
},
file: {
enabled: true,
directory: "./cache",
ttl: 86400000, // 24 hours
},
},
},
});
Smart Cache Keys¶
// Content-based caching
const cacheConfig = {
keyStrategy: "content_hash",
includeProvider: false, // Cache across providers
includeTemperature: true, // Different temps = different cache
versionKey: "v1.0", // Cache versioning
};
Cache Warming¶
# Pre-populate cache with common queries
npx @juspay/neurolink cache warm \
--patterns common_prompts.txt \
--providers openai,anthropic \
--temperature-range 0.1,0.5,0.9
🎯 Production Optimization¶
Environment Configuration¶
# Production environment variables
export NODE_ENV=production
export NEUROLINK_CACHE_ENABLED=true
export NEUROLINK_POOL_SIZE=20
export NEUROLINK_MAX_RETRIES=3
export NEUROLINK_TIMEOUT=30000
export NEUROLINK_COMPRESSION=true
Resource Management¶
// Production resource limits
const productionConfig = {
limits: {
maxConcurrentRequests: 50,
maxQueueSize: 200,
maxMemoryUsage: "512MB",
requestTimeout: 30000,
maxTokensPerRequest: 4000,
},
monitoring: {
alertThresholds: {
errorRate: 0.05, // 5% error rate
avgLatency: 5000, // 5 second response time
queueDepth: 100, // 100 queued requests
},
},
};
Auto-scaling¶
// Auto-scaling configuration
const scaler = new AutoScaler({
minInstances: 2,
maxInstances: 10,
scaleUpThreshold: {
cpuUsage: 70,
memoryUsage: 80,
queueDepth: 50,
},
scaleDownThreshold: {
cpuUsage: 30,
memoryUsage: 40,
queueDepth: 5,
},
cooldown: 300000, // 5 minutes
});
🔍 Performance Debugging¶
Profiling Tools¶
// Enable detailed profiling
const neurolink = new NeuroLink({
profiling: {
enabled: process.env.NODE_ENV === "development",
includeStackTraces: true,
trackMemoryUsage: true,
outputFile: "./performance.log",
},
});
Latency Analysis¶
# Analyze response time patterns
npx @juspay/neurolink analyze latency \
--log-file performance.log \
--time-range "last 24h" \
--group-by provider,model \
--percentiles 50,90,95,99
Bottleneck Detection¶
// Identify performance bottlenecks
const analyzer = new PerformanceAnalyzer();
const report = await analyzer.analyze({
timeRange: "24h",
groupBy: ["provider", "model", "requestSize"],
metrics: ["latency", "throughput", "errorRate"],
});
console.log("Slowest operations:", report.bottlenecks);
console.log("Optimization recommendations:", report.recommendations);
🏭 Enterprise Performance¶
Load Testing¶
# Comprehensive load testing
npx @juspay/neurolink load-test \
--target-rps 100 \
--duration 10m \
--providers openai,anthropic \
--scenarios scenarios.json \
--report performance_report.html
Stress Testing¶
// Stress test configuration
const stressTest = new StressTestRunner({
rampUp: {
startRPS: 1,
endRPS: 500,
duration: "5m",
},
plateau: {
targetRPS: 500,
duration: "10m",
},
rampDown: {
duration: "2m",
},
});
const results = await stressTest.run();
Capacity Planning¶
// Capacity planning calculator
const planner = new CapacityPlanner({
expectedUsers: 10000,
averageRequestsPerUser: 5,
peakMultiplier: 3,
responseTimeTarget: 2000, // 2 seconds
availabilityTarget: 99.9, // 99.9% uptime
});
const requirements = planner.calculate();
console.log("Required capacity:", requirements);
📊 Performance Benchmarks¶
Provider Comparison¶
Provider | Avg Latency | Throughput | Success Rate | Cost/1K tokens |
---|---|---|---|---|
OpenAI | 1.2s | 150 req/s | 99.5% | $0.03 |
Anthropic | 1.8s | 120 req/s | 99.8% | $0.015 |
Google AI | 0.9s | 200 req/s | 99.2% | $0.025 |
Bedrock | 2.1s | 100 req/s | 99.9% | $0.02 |
Optimization Results¶
// Before vs After optimization
const benchmarks = {
before: {
avgLatency: 3500, // 3.5 seconds
throughput: 50, // 50 req/s
errorRate: 0.02, // 2% errors
cacheHitRate: 0, // No caching
},
after: {
avgLatency: 1200, // 1.2 seconds (-66%)
throughput: 180, // 180 req/s (+260%)
errorRate: 0.005, // 0.5% errors (-75%)
cacheHitRate: 0.35, // 35% cache hits
},
};
🎛️ Monitoring and Alerting¶
Performance Alerts¶
// Setup performance monitoring alerts
const alerts = new AlertManager({
thresholds: {
responseTime: {
warning: 2000, // 2 seconds
critical: 5000, // 5 seconds
},
errorRate: {
warning: 0.01, // 1%
critical: 0.05, // 5%
},
throughput: {
warning: 50, // Below 50 req/s
critical: 20, // Below 20 req/s
},
},
notifications: {
slack: process.env.SLACK_WEBHOOK,
email: process.env.ALERT_EMAIL,
},
});
Real-time Dashboard¶
// Performance monitoring dashboard
const dashboard = {
metrics: [
"requests_per_second",
"average_response_time",
"error_rate",
"cache_hit_ratio",
"provider_health",
"queue_depth",
"memory_usage",
"cpu_usage",
],
charts: [
"response_time_histogram",
"throughput_timeline",
"error_rate_timeline",
"provider_comparison",
],
};
🔧 Troubleshooting Performance Issues¶
Common Issues¶
- High Latency
- Check provider response times
- Verify network connectivity
- Review request complexity
-
Consider request timeouts
-
Low Throughput
- Increase connection pool size
- Enable parallel processing
- Optimize request batching
-
Check rate limits
-
Memory Leaks
- Monitor cache size
- Review object retention
- Check for unclosed streams
- Implement proper cleanup
Diagnostic Commands¶
# Performance diagnostics
npx @juspay/neurolink diagnose performance \
--verbose \
--include-providers \
--include-cache \
--include-memory \
--output diagnosis.json
This comprehensive performance optimization guide provides the tools and strategies needed to maximize NeuroLink's performance in any environment, from development to large-scale production deployments.
📚 Related Documentation¶
- Advanced Analytics - Performance tracking and analysis
- System Architecture - Understanding system design
- Troubleshooting - Common performance issues
- Enterprise Setup - Production configuration