AI-Driven Tool Orchestration Guide¶
NeuroLink Enhanced MCP Platform - AI Orchestration
๐ค Overview: AI-Powered Tool Selection¶
The NeuroLink MCP platform features sophisticated AI-driven tool orchestration that enables AI models to dynamically select and execute tools based on task requirements, creating intelligent workflows that adapt to context.
Key Capabilities¶
- Dynamic Tool Selection: AI analyzes tasks and selects optimal tool sequences
- Confidence Scoring: 0-1 scale confidence ratings for tool selection decisions
- Reasoning Capture: Natural language explanations for tool choices
- Chain Execution: Multi-step workflows with intelligent continuation logic
- Context Preservation: Maintains state across multi-step operations
๐๏ธ Architecture & Components¶
Core Orchestration System¶
export class DynamicOrchestrator {
private baseOrchestrator: MCPOrchestrator;
private aiCoreServer: typeof aiCoreServer;
private chainPlanners: Map<string, ChainPlanner>;
async executeDynamicToolChain(
prompt: string,
context: NeuroLinkExecutionContext,
options: DynamicToolChainOptions,
): Promise<DynamicToolChainResult> {
const availableTools =
await this.baseOrchestrator.registry.listTools(context);
const planner = this.getChainPlanner(options.plannerType || "ai-model");
let currentResult = prompt;
const executionHistory: ToolDecision[] = [];
for (
let iteration = 0;
iteration < (options.maxIterations || 5);
iteration++
) {
const decision = await planner.planNextTool(
currentResult,
availableTools,
executionHistory,
);
if (!decision || !decision.shouldContinue) break;
const toolResult = await this.baseOrchestrator.executeTool(
decision.toolName,
decision.args,
context,
);
executionHistory.push(decision);
currentResult = this.combineResults(currentResult, toolResult);
}
return {
success: true,
finalResult: currentResult,
executionHistory,
totalIterations: executionHistory.length,
};
}
}
AI Decision Making Interface¶
export interface ToolDecision {
toolName: string; // Selected tool name
args: Record<string, any>; // Tool arguments
reasoning: string; // AI's reasoning for selection
confidence: number; // 0-1 confidence score
shouldContinue: boolean; // Whether to continue chain
priority: number; // Execution priority
estimatedDuration?: number; // Expected execution time
}
export interface DynamicToolChainOptions {
maxIterations?: number; // Max steps in chain (default: 5)
plannerType?: "heuristic" | "ai-model"; // Planning strategy
allowRecursion?: boolean; // Allow same tool multiple times
timeoutPerStep?: number; // Timeout per tool execution
confidenceThreshold?: number; // Minimum confidence to proceed
}
๐ฏ Chain Planning Strategies¶
AI Model Chain Planner¶
export class AIModelChainPlanner implements ChainPlanner {
private aiProvider: AIProvider;
async planNextTool(
currentContext: string,
availableTools: ToolInfo[],
executionHistory: ToolDecision[],
): Promise<ToolDecision | null> {
const systemPrompt = this.buildSystemPrompt(
availableTools,
executionHistory,
);
const userPrompt = `
Current context: ${currentContext}
Based on the current context and available tools, select the next tool to execute.
Consider:
1. What information is still needed?
2. Which tool would be most helpful?
3. Are we making progress toward the goal?
Respond with a JSON object containing your decision.
`;
const response = await this.aiProvider.generate({
input: { text: userPrompt },
systemPrompt,
maxTokens: 500,
temperature: 0.3,
});
return this.parseAIResponse(response);
}
private buildSystemPrompt(
tools: ToolInfo[],
history: ToolDecision[],
): string {
return `
You are an AI tool orchestrator. Your job is to select the best tool for each step.
Available tools:
${tools.map((tool) => `- ${tool.name}: ${tool.description}`).join("\n")}
Previous decisions:
${history.map((d) => `- Used ${d.toolName}: ${d.reasoning}`).join("\n")}
Select tools that:
1. Make progress toward the goal
2. Don't repeat unnecessary work
3. Build upon previous results
Return JSON: {
"toolName": "selected-tool",
"args": {...},
"reasoning": "why this tool",
"confidence": 0.8,
"shouldContinue": true
}
`;
}
}
Heuristic Chain Planner¶
export class HeuristicChainPlanner implements ChainPlanner {
private rules: PlanningRule[];
async planNextTool(
currentContext: string,
availableTools: ToolInfo[],
executionHistory: ToolDecision[],
): Promise<ToolDecision | null> {
// Apply heuristic rules
for (const rule of this.rules) {
const decision = rule.evaluate(
currentContext,
availableTools,
executionHistory,
);
if (decision && decision.confidence > 0.7) {
return decision;
}
}
// Fallback to simple tool selection
return this.selectFallbackTool(currentContext, availableTools);
}
}
// Example heuristic rule
const DATA_FETCHING_RULE: PlanningRule = {
name: "data-fetching",
evaluate: (context, tools, history) => {
if (
context.includes("need data") ||
context.includes("fetch information")
) {
const dataTool = tools.find(
(t) => t.name.includes("fetch") || t.name.includes("get"),
);
if (dataTool) {
return {
toolName: dataTool.name,
args: { query: extractQuery(context) },
reasoning: "Detected need for data fetching",
confidence: 0.8,
shouldContinue: true,
priority: 1,
};
}
}
return null;
},
};
๐ Usage Examples¶
Basic AI Orchestration¶
import { DynamicOrchestrator } from "@juspay/neurolink/mcp";
// Initialize orchestrator
const orchestrator = new DynamicOrchestrator({
registry: mcpRegistry,
aiProvider: "google-ai",
});
// Execute AI-driven tool chain
const result = await orchestrator.executeDynamicToolChain(
"I need to analyze user feedback data and create a summary report",
context,
{
maxIterations: 8,
plannerType: "ai-model",
confidenceThreshold: 0.6,
},
);
console.log("Final result:", result.finalResult);
console.log(
"Tools used:",
result.executionHistory.map((h) => h.toolName),
);
console.log(
"AI reasoning:",
result.executionHistory.map((h) => h.reasoning),
);
Multi-Step Workflow Example¶
// Real-world example: User profile analysis
const profileAnalysis = async () => {
const prompt = `
Analyze user profile for user ID 12345:
1. Fetch user data from database
2. Get recent activity logs
3. Calculate engagement metrics
4. Generate recommendations
`;
const result = await orchestrator.executeDynamicToolChain(prompt, context, {
maxIterations: 10,
allowRecursion: false,
timeoutPerStep: 30000,
});
// AI might select tools like:
// 1. database-query (fetch user data)
// 2. activity-analyzer (analyze logs)
// 3. metrics-calculator (compute engagement)
// 4. recommendation-engine (generate suggestions)
return result;
};
Context-Aware Tool Selection¶
// The AI adapts based on available tools and context
const adaptiveWorkflow = async (userRequest: string) => {
const context = {
userId: "user123",
sessionId: "session456",
permissions: ["read-data", "analyze-metrics"],
preferences: { format: "json", includeCharts: true },
};
const result = await orchestrator.executeDynamicToolChain(
userRequest,
context,
{
maxIterations: 5,
plannerType: "ai-model",
confidenceThreshold: 0.7,
},
);
// AI considers:
// - User permissions (only selects allowed tools)
// - Session context (maintains state)
// - User preferences (formats output appropriately)
return result;
};
๐ Monitoring & Analytics¶
Execution Analytics¶
interface DynamicToolChainResult {
success: boolean;
finalResult: any;
executionHistory: ToolDecision[];
totalIterations: number;
totalExecutionTime: number;
analytics: {
toolsUsed: string[];
averageConfidence: number;
planningTime: number;
executionTime: number;
successRate: number;
};
}
// Analyze orchestration performance
const analyzeExecution = (result: DynamicToolChainResult) => {
console.log("Performance Metrics:");
console.log(`- Total iterations: ${result.totalIterations}`);
console.log(`- Average confidence: ${result.analytics.averageConfidence}`);
console.log(`- Tools used: ${result.analytics.toolsUsed.join(", ")}`);
console.log(`- Success rate: ${result.analytics.successRate * 100}%`);
};
Decision Quality Tracking¶
// Track decision quality over time
class OrchestrationAnalytics {
private decisionHistory: ToolDecision[] = [];
trackDecision(decision: ToolDecision, outcome: "success" | "failure") {
this.decisionHistory.push({ ...decision, outcome });
}
getQualityMetrics() {
const totalDecisions = this.decisionHistory.length;
const successfulDecisions = this.decisionHistory.filter(
(d) => d.outcome === "success",
).length;
const averageConfidence =
this.decisionHistory.reduce((sum, d) => sum + d.confidence, 0) /
totalDecisions;
return {
successRate: successfulDecisions / totalDecisions,
averageConfidence,
totalDecisions,
confidenceAccuracy: this.calculateConfidenceAccuracy(),
};
}
private calculateConfidenceAccuracy(): number {
// Compare confidence scores with actual success rates
const confidenceBuckets = new Map();
this.decisionHistory.forEach((decision) => {
const bucket = Math.floor(decision.confidence * 10) / 10;
if (!confidenceBuckets.has(bucket)) {
confidenceBuckets.set(bucket, { total: 0, successful: 0 });
}
const bucketData = confidenceBuckets.get(bucket);
bucketData.total++;
if (decision.outcome === "success") bucketData.successful++;
});
// Calculate how well confidence scores predict success
let totalAccuracy = 0;
confidenceBuckets.forEach((data, confidence) => {
const actualSuccessRate = data.successful / data.total;
const accuracy = 1 - Math.abs(confidence - actualSuccessRate);
totalAccuracy += accuracy;
});
return totalAccuracy / confidenceBuckets.size;
}
}
๐งช Testing & Validation¶
AI Decision Testing¶
// Test AI tool selection quality
const testAIDecisions = async () => {
const testCases = [
{
prompt: "Get user data for analysis",
expectedTools: ["database-query", "user-fetcher"],
minConfidence: 0.7,
},
{
prompt: "Generate a report with charts",
expectedTools: ["data-analyzer", "chart-generator"],
minConfidence: 0.6,
},
];
for (const testCase of testCases) {
const result = await orchestrator.executeDynamicToolChain(
testCase.prompt,
testContext,
{ maxIterations: 3 },
);
const toolsUsed = result.executionHistory.map((h) => h.toolName);
const avgConfidence =
result.executionHistory.reduce((sum, h) => sum + h.confidence, 0) /
result.executionHistory.length;
console.log(`Test: ${testCase.prompt}`);
console.log(`Tools used: ${toolsUsed.join(", ")}`);
console.log(`Average confidence: ${avgConfidence}`);
console.log(
`Expected tools found: ${testCase.expectedTools.some((t) => toolsUsed.includes(t))}`,
);
console.log(
`Confidence threshold met: ${avgConfidence >= testCase.minConfidence}`,
);
}
};
Chain Execution Testing¶
// Test multi-step workflow execution
const testChainExecution = async () => {
const complexWorkflow = `
I need to:
1. Fetch user preferences from database
2. Get current market data
3. Calculate personalized recommendations
4. Format results as JSON report
5. Send notification to user
`;
const startTime = Date.now();
const result = await orchestrator.executeDynamicToolChain(
complexWorkflow,
testContext,
{
maxIterations: 10,
timeoutPerStep: 15000,
confidenceThreshold: 0.5,
},
);
const executionTime = Date.now() - startTime;
console.log("Chain Execution Test Results:");
console.log(`- Success: ${result.success}`);
console.log(`- Steps executed: ${result.totalIterations}`);
console.log(`- Execution time: ${executionTime}ms`);
console.log(
`- Tools used: ${result.executionHistory.map((h) => h.toolName).join(" โ ")}`,
);
};
๐ง Configuration & Customization¶
AI Provider Configuration¶
interface AIOrchestrationConfig {
aiProvider: string; // AI provider for planning
model?: string; // Specific model to use
planningPrompts: {
systemPrompt?: string; // Custom system prompt
decisionPrompt?: string; // Custom decision prompt
continuationPrompt?: string; // Custom continuation logic
};
thresholds: {
confidenceThreshold: number; // Min confidence to proceed
maxIterations: number; // Max chain length
timeoutPerStep: number; // Step timeout
};
fallback: {
useHeuristics: boolean; // Fallback to heuristics
defaultPlanner: string; // Fallback planner type
};
}
const orchestrator = new DynamicOrchestrator({
registry: mcpRegistry,
config: {
aiProvider: "google-ai",
model: "gemini-2.5-pro",
planningPrompts: {
systemPrompt: "You are an expert tool orchestrator...",
},
thresholds: {
confidenceThreshold: 0.7,
maxIterations: 8,
timeoutPerStep: 30000,
},
fallback: {
useHeuristics: true,
defaultPlanner: "heuristic",
},
},
});
Custom Planning Rules¶
// Create custom heuristic rules
const customRules: PlanningRule[] = [
{
name: "priority-data-access",
evaluate: (context, tools, history) => {
if (
context.includes("urgent") &&
!history.some((h) => h.toolName.includes("database"))
) {
const dbTool = tools.find((t) => t.name.includes("database"));
if (dbTool) {
return {
toolName: dbTool.name,
args: { priority: "high" },
reasoning: "Urgent request requires immediate data access",
confidence: 0.9,
shouldContinue: true,
priority: 1,
};
}
}
return null;
},
},
];
// Add custom rules to heuristic planner
const heuristicPlanner = new HeuristicChainPlanner({
rules: [...defaultRules, ...customRules],
fallbackStrategy: "random-selection",
});
๐ฏ Best Practices¶
Prompt Engineering for Tool Selection¶
// Effective prompts for AI orchestration
const bestPracticePrompts = {
// โ
Good: Specific and actionable
good: "Analyze user engagement metrics for Q4 2024 and identify top 3 improvement opportunities",
// โ Poor: Vague and ambiguous
poor: "Do something with user data",
// โ
Good: Clear sequence and context
goodSequence: `
For user ID 12345:
1. Fetch recent purchase history (last 30 days)
2. Analyze spending patterns
3. Generate personalized product recommendations
4. Format as JSON with confidence scores
`,
// โ
Good: Includes constraints and preferences
goodWithConstraints:
"Generate weekly sales report including charts, but only use data from authorized regions and format for mobile viewing",
};
Error Handling & Fallbacks¶
// Robust error handling in orchestration
const robustOrchestration = async (prompt: string) => {
try {
const result = await orchestrator.executeDynamicToolChain(prompt, context, {
maxIterations: 5,
confidenceThreshold: 0.6,
timeoutPerStep: 20000,
});
if (!result.success) {
console.warn("Orchestration failed, trying simpler approach");
// Fallback to single tool execution
return await orchestrator.executeSingleTool(
"general-processor",
{ input: prompt },
context,
);
}
return result;
} catch (error) {
console.error("Orchestration error:", error);
// Ultimate fallback
return {
success: false,
error: error.message,
fallbackExecuted: true,
};
}
};
Performance Optimization¶
// Optimize orchestration performance
const optimizedOrchestration = {
// Cache tool metadata for faster planning
cacheToolMetadata: true,
// Parallel execution where possible
async executeParallelSteps(decisions: ToolDecision[]) {
const parallelGroups = this.groupParallelizableTools(decisions);
for (const group of parallelGroups) {
if (group.length === 1) {
await this.executeTool(group[0]);
} else {
await Promise.all(group.map((decision) => this.executeTool(decision)));
}
}
},
// Intelligent timeout management
calculateDynamicTimeout(toolName: string, complexity: number): number {
const baseTimeout = 10000;
const complexityMultiplier = Math.max(1, complexity / 5);
const toolSpecificMultiplier = this.getToolTimeoutMultiplier(toolName);
return baseTimeout * complexityMultiplier * toolSpecificMultiplier;
},
};
๐ Integration Examples¶
Provider Integration¶
// Integrate with AI providers
export class EnhancedAIProvider {
private orchestrator: DynamicOrchestrator;
async generateWithTools(prompt: string, context: any) {
// Use AI orchestration for tool-enhanced generation
const toolResult = await this.orchestrator.executeDynamicToolChain(
`Use available tools to enhance this request: ${prompt}`,
context,
{ maxIterations: 3, confidenceThreshold: 0.7 },
);
// Combine tool results with AI generation
const enhancedPrompt = `
Original request: ${prompt}
Tool-gathered information:
${toolResult.finalResult}
Provide a comprehensive response using this information.
`;
return await this.baseProvider.generate({
input: { text: enhancedPrompt },
});
}
}
Workflow Automation¶
// Automate complex business workflows
class BusinessWorkflowOrchestrator {
async processCustomerRequest(request: CustomerRequest) {
const workflowPrompt = `
Customer request: ${request.description}
Customer tier: ${request.customerTier}
Priority: ${request.priority}
Process this request following our standard workflow:
1. Validate customer information
2. Check service availability
3. Generate quote or solution
4. Create follow-up tasks
5. Send confirmation to customer
`;
return await this.orchestrator.executeDynamicToolChain(
workflowPrompt,
{
customerId: request.customerId,
userPermissions: ["customer-service", "pricing"],
workflowId: generateWorkflowId(),
},
{
maxIterations: 10,
plannerType: "ai-model",
confidenceThreshold: 0.8,
},
);
}
}
STATUS: Production-ready AI orchestration system enabling sophisticated dynamic tool selection and workflow automation. Provides enterprise-grade AI-driven decision making with comprehensive monitoring and customization capabilities.