Skip to content

AI-Driven Tool Orchestration Guide

NeuroLink Enhanced MCP Platform - AI Orchestration


๐Ÿค– Overview: AI-Powered Tool Selection

The NeuroLink MCP platform features sophisticated AI-driven tool orchestration that enables AI models to dynamically select and execute tools based on task requirements, creating intelligent workflows that adapt to context.

Key Capabilities

  • Dynamic Tool Selection: AI analyzes tasks and selects optimal tool sequences
  • Confidence Scoring: 0-1 scale confidence ratings for tool selection decisions
  • Reasoning Capture: Natural language explanations for tool choices
  • Chain Execution: Multi-step workflows with intelligent continuation logic
  • Context Preservation: Maintains state across multi-step operations

๐Ÿ—๏ธ Architecture & Components

Core Orchestration System

export class DynamicOrchestrator {
  private baseOrchestrator: MCPOrchestrator;
  private aiCoreServer: typeof aiCoreServer;
  private chainPlanners: Map<string, ChainPlanner>;

  async executeDynamicToolChain(
    prompt: string,
    context: NeuroLinkExecutionContext,
    options: DynamicToolChainOptions,
  ): Promise<DynamicToolChainResult> {
    const availableTools =
      await this.baseOrchestrator.registry.listTools(context);
    const planner = this.getChainPlanner(options.plannerType || "ai-model");

    let currentResult = prompt;
    const executionHistory: ToolDecision[] = [];

    for (
      let iteration = 0;
      iteration < (options.maxIterations || 5);
      iteration++
    ) {
      const decision = await planner.planNextTool(
        currentResult,
        availableTools,
        executionHistory,
      );

      if (!decision || !decision.shouldContinue) break;

      const toolResult = await this.baseOrchestrator.executeTool(
        decision.toolName,
        decision.args,
        context,
      );

      executionHistory.push(decision);
      currentResult = this.combineResults(currentResult, toolResult);
    }

    return {
      success: true,
      finalResult: currentResult,
      executionHistory,
      totalIterations: executionHistory.length,
    };
  }
}

AI Decision Making Interface

export interface ToolDecision {
  toolName: string; // Selected tool name
  args: Record<string, any>; // Tool arguments
  reasoning: string; // AI's reasoning for selection
  confidence: number; // 0-1 confidence score
  shouldContinue: boolean; // Whether to continue chain
  priority: number; // Execution priority
  estimatedDuration?: number; // Expected execution time
}

export interface DynamicToolChainOptions {
  maxIterations?: number; // Max steps in chain (default: 5)
  plannerType?: "heuristic" | "ai-model"; // Planning strategy
  allowRecursion?: boolean; // Allow same tool multiple times
  timeoutPerStep?: number; // Timeout per tool execution
  confidenceThreshold?: number; // Minimum confidence to proceed
}

๐ŸŽฏ Chain Planning Strategies

AI Model Chain Planner

export class AIModelChainPlanner implements ChainPlanner {
  private aiProvider: AIProvider;

  async planNextTool(
    currentContext: string,
    availableTools: ToolInfo[],
    executionHistory: ToolDecision[],
  ): Promise<ToolDecision | null> {
    const systemPrompt = this.buildSystemPrompt(
      availableTools,
      executionHistory,
    );
    const userPrompt = `
      Current context: ${currentContext}

      Based on the current context and available tools, select the next tool to execute.
      Consider:
      1. What information is still needed?
      2. Which tool would be most helpful?
      3. Are we making progress toward the goal?

      Respond with a JSON object containing your decision.
    `;

    const response = await this.aiProvider.generate({
      input: { text: userPrompt },
      systemPrompt,
      maxTokens: 500,
      temperature: 0.3,
    });

    return this.parseAIResponse(response);
  }

  private buildSystemPrompt(
    tools: ToolInfo[],
    history: ToolDecision[],
  ): string {
    return `
      You are an AI tool orchestrator. Your job is to select the best tool for each step.

      Available tools:
      ${tools.map((tool) => `- ${tool.name}: ${tool.description}`).join("\n")}

      Previous decisions:
      ${history.map((d) => `- Used ${d.toolName}: ${d.reasoning}`).join("\n")}

      Select tools that:
      1. Make progress toward the goal
      2. Don't repeat unnecessary work
      3. Build upon previous results

      Return JSON: {
        "toolName": "selected-tool",
        "args": {...},
        "reasoning": "why this tool",
        "confidence": 0.8,
        "shouldContinue": true
      }
    `;
  }
}

Heuristic Chain Planner

export class HeuristicChainPlanner implements ChainPlanner {
  private rules: PlanningRule[];

  async planNextTool(
    currentContext: string,
    availableTools: ToolInfo[],
    executionHistory: ToolDecision[],
  ): Promise<ToolDecision | null> {
    // Apply heuristic rules
    for (const rule of this.rules) {
      const decision = rule.evaluate(
        currentContext,
        availableTools,
        executionHistory,
      );
      if (decision && decision.confidence > 0.7) {
        return decision;
      }
    }

    // Fallback to simple tool selection
    return this.selectFallbackTool(currentContext, availableTools);
  }
}

// Example heuristic rule
const DATA_FETCHING_RULE: PlanningRule = {
  name: "data-fetching",
  evaluate: (context, tools, history) => {
    if (
      context.includes("need data") ||
      context.includes("fetch information")
    ) {
      const dataTool = tools.find(
        (t) => t.name.includes("fetch") || t.name.includes("get"),
      );
      if (dataTool) {
        return {
          toolName: dataTool.name,
          args: { query: extractQuery(context) },
          reasoning: "Detected need for data fetching",
          confidence: 0.8,
          shouldContinue: true,
          priority: 1,
        };
      }
    }
    return null;
  },
};

๐Ÿš€ Usage Examples

Basic AI Orchestration

import { DynamicOrchestrator } from "@juspay/neurolink/mcp";

// Initialize orchestrator
const orchestrator = new DynamicOrchestrator({
  registry: mcpRegistry,
  aiProvider: "google-ai",
});

// Execute AI-driven tool chain
const result = await orchestrator.executeDynamicToolChain(
  "I need to analyze user feedback data and create a summary report",
  context,
  {
    maxIterations: 8,
    plannerType: "ai-model",
    confidenceThreshold: 0.6,
  },
);

console.log("Final result:", result.finalResult);
console.log(
  "Tools used:",
  result.executionHistory.map((h) => h.toolName),
);
console.log(
  "AI reasoning:",
  result.executionHistory.map((h) => h.reasoning),
);

Multi-Step Workflow Example

// Real-world example: User profile analysis
const profileAnalysis = async () => {
  const prompt = `
    Analyze user profile for user ID 12345:
    1. Fetch user data from database
    2. Get recent activity logs
    3. Calculate engagement metrics
    4. Generate recommendations
  `;

  const result = await orchestrator.executeDynamicToolChain(prompt, context, {
    maxIterations: 10,
    allowRecursion: false,
    timeoutPerStep: 30000,
  });

  // AI might select tools like:
  // 1. database-query (fetch user data)
  // 2. activity-analyzer (analyze logs)
  // 3. metrics-calculator (compute engagement)
  // 4. recommendation-engine (generate suggestions)

  return result;
};

Context-Aware Tool Selection

// The AI adapts based on available tools and context
const adaptiveWorkflow = async (userRequest: string) => {
  const context = {
    userId: "user123",
    sessionId: "session456",
    permissions: ["read-data", "analyze-metrics"],
    preferences: { format: "json", includeCharts: true },
  };

  const result = await orchestrator.executeDynamicToolChain(
    userRequest,
    context,
    {
      maxIterations: 5,
      plannerType: "ai-model",
      confidenceThreshold: 0.7,
    },
  );

  // AI considers:
  // - User permissions (only selects allowed tools)
  // - Session context (maintains state)
  // - User preferences (formats output appropriately)

  return result;
};

๐Ÿ“Š Monitoring & Analytics

Execution Analytics

interface DynamicToolChainResult {
  success: boolean;
  finalResult: any;
  executionHistory: ToolDecision[];
  totalIterations: number;
  totalExecutionTime: number;
  analytics: {
    toolsUsed: string[];
    averageConfidence: number;
    planningTime: number;
    executionTime: number;
    successRate: number;
  };
}

// Analyze orchestration performance
const analyzeExecution = (result: DynamicToolChainResult) => {
  console.log("Performance Metrics:");
  console.log(`- Total iterations: ${result.totalIterations}`);
  console.log(`- Average confidence: ${result.analytics.averageConfidence}`);
  console.log(`- Tools used: ${result.analytics.toolsUsed.join(", ")}`);
  console.log(`- Success rate: ${result.analytics.successRate * 100}%`);
};

Decision Quality Tracking

// Track decision quality over time
class OrchestrationAnalytics {
  private decisionHistory: ToolDecision[] = [];

  trackDecision(decision: ToolDecision, outcome: "success" | "failure") {
    this.decisionHistory.push({ ...decision, outcome });
  }

  getQualityMetrics() {
    const totalDecisions = this.decisionHistory.length;
    const successfulDecisions = this.decisionHistory.filter(
      (d) => d.outcome === "success",
    ).length;
    const averageConfidence =
      this.decisionHistory.reduce((sum, d) => sum + d.confidence, 0) /
      totalDecisions;

    return {
      successRate: successfulDecisions / totalDecisions,
      averageConfidence,
      totalDecisions,
      confidenceAccuracy: this.calculateConfidenceAccuracy(),
    };
  }

  private calculateConfidenceAccuracy(): number {
    // Compare confidence scores with actual success rates
    const confidenceBuckets = new Map();

    this.decisionHistory.forEach((decision) => {
      const bucket = Math.floor(decision.confidence * 10) / 10;
      if (!confidenceBuckets.has(bucket)) {
        confidenceBuckets.set(bucket, { total: 0, successful: 0 });
      }

      const bucketData = confidenceBuckets.get(bucket);
      bucketData.total++;
      if (decision.outcome === "success") bucketData.successful++;
    });

    // Calculate how well confidence scores predict success
    let totalAccuracy = 0;
    confidenceBuckets.forEach((data, confidence) => {
      const actualSuccessRate = data.successful / data.total;
      const accuracy = 1 - Math.abs(confidence - actualSuccessRate);
      totalAccuracy += accuracy;
    });

    return totalAccuracy / confidenceBuckets.size;
  }
}

๐Ÿงช Testing & Validation

AI Decision Testing

// Test AI tool selection quality
const testAIDecisions = async () => {
  const testCases = [
    {
      prompt: "Get user data for analysis",
      expectedTools: ["database-query", "user-fetcher"],
      minConfidence: 0.7,
    },
    {
      prompt: "Generate a report with charts",
      expectedTools: ["data-analyzer", "chart-generator"],
      minConfidence: 0.6,
    },
  ];

  for (const testCase of testCases) {
    const result = await orchestrator.executeDynamicToolChain(
      testCase.prompt,
      testContext,
      { maxIterations: 3 },
    );

    const toolsUsed = result.executionHistory.map((h) => h.toolName);
    const avgConfidence =
      result.executionHistory.reduce((sum, h) => sum + h.confidence, 0) /
      result.executionHistory.length;

    console.log(`Test: ${testCase.prompt}`);
    console.log(`Tools used: ${toolsUsed.join(", ")}`);
    console.log(`Average confidence: ${avgConfidence}`);
    console.log(
      `Expected tools found: ${testCase.expectedTools.some((t) => toolsUsed.includes(t))}`,
    );
    console.log(
      `Confidence threshold met: ${avgConfidence >= testCase.minConfidence}`,
    );
  }
};

Chain Execution Testing

// Test multi-step workflow execution
const testChainExecution = async () => {
  const complexWorkflow = `
    I need to:
    1. Fetch user preferences from database
    2. Get current market data
    3. Calculate personalized recommendations
    4. Format results as JSON report
    5. Send notification to user
  `;

  const startTime = Date.now();
  const result = await orchestrator.executeDynamicToolChain(
    complexWorkflow,
    testContext,
    {
      maxIterations: 10,
      timeoutPerStep: 15000,
      confidenceThreshold: 0.5,
    },
  );
  const executionTime = Date.now() - startTime;

  console.log("Chain Execution Test Results:");
  console.log(`- Success: ${result.success}`);
  console.log(`- Steps executed: ${result.totalIterations}`);
  console.log(`- Execution time: ${executionTime}ms`);
  console.log(
    `- Tools used: ${result.executionHistory.map((h) => h.toolName).join(" โ†’ ")}`,
  );
};

๐Ÿ”ง Configuration & Customization

AI Provider Configuration

interface AIOrchestrationConfig {
  aiProvider: string; // AI provider for planning
  model?: string; // Specific model to use
  planningPrompts: {
    systemPrompt?: string; // Custom system prompt
    decisionPrompt?: string; // Custom decision prompt
    continuationPrompt?: string; // Custom continuation logic
  };
  thresholds: {
    confidenceThreshold: number; // Min confidence to proceed
    maxIterations: number; // Max chain length
    timeoutPerStep: number; // Step timeout
  };
  fallback: {
    useHeuristics: boolean; // Fallback to heuristics
    defaultPlanner: string; // Fallback planner type
  };
}

const orchestrator = new DynamicOrchestrator({
  registry: mcpRegistry,
  config: {
    aiProvider: "google-ai",
    model: "gemini-2.5-pro",
    planningPrompts: {
      systemPrompt: "You are an expert tool orchestrator...",
    },
    thresholds: {
      confidenceThreshold: 0.7,
      maxIterations: 8,
      timeoutPerStep: 30000,
    },
    fallback: {
      useHeuristics: true,
      defaultPlanner: "heuristic",
    },
  },
});

Custom Planning Rules

// Create custom heuristic rules
const customRules: PlanningRule[] = [
  {
    name: "priority-data-access",
    evaluate: (context, tools, history) => {
      if (
        context.includes("urgent") &&
        !history.some((h) => h.toolName.includes("database"))
      ) {
        const dbTool = tools.find((t) => t.name.includes("database"));
        if (dbTool) {
          return {
            toolName: dbTool.name,
            args: { priority: "high" },
            reasoning: "Urgent request requires immediate data access",
            confidence: 0.9,
            shouldContinue: true,
            priority: 1,
          };
        }
      }
      return null;
    },
  },
];

// Add custom rules to heuristic planner
const heuristicPlanner = new HeuristicChainPlanner({
  rules: [...defaultRules, ...customRules],
  fallbackStrategy: "random-selection",
});

๐ŸŽฏ Best Practices

Prompt Engineering for Tool Selection

// Effective prompts for AI orchestration
const bestPracticePrompts = {
  // โœ… Good: Specific and actionable
  good: "Analyze user engagement metrics for Q4 2024 and identify top 3 improvement opportunities",

  // โŒ Poor: Vague and ambiguous
  poor: "Do something with user data",

  // โœ… Good: Clear sequence and context
  goodSequence: `
    For user ID 12345:
    1. Fetch recent purchase history (last 30 days)
    2. Analyze spending patterns
    3. Generate personalized product recommendations
    4. Format as JSON with confidence scores
  `,

  // โœ… Good: Includes constraints and preferences
  goodWithConstraints:
    "Generate weekly sales report including charts, but only use data from authorized regions and format for mobile viewing",
};

Error Handling & Fallbacks

// Robust error handling in orchestration
const robustOrchestration = async (prompt: string) => {
  try {
    const result = await orchestrator.executeDynamicToolChain(prompt, context, {
      maxIterations: 5,
      confidenceThreshold: 0.6,
      timeoutPerStep: 20000,
    });

    if (!result.success) {
      console.warn("Orchestration failed, trying simpler approach");

      // Fallback to single tool execution
      return await orchestrator.executeSingleTool(
        "general-processor",
        { input: prompt },
        context,
      );
    }

    return result;
  } catch (error) {
    console.error("Orchestration error:", error);

    // Ultimate fallback
    return {
      success: false,
      error: error.message,
      fallbackExecuted: true,
    };
  }
};

Performance Optimization

// Optimize orchestration performance
const optimizedOrchestration = {
  // Cache tool metadata for faster planning
  cacheToolMetadata: true,

  // Parallel execution where possible
  async executeParallelSteps(decisions: ToolDecision[]) {
    const parallelGroups = this.groupParallelizableTools(decisions);

    for (const group of parallelGroups) {
      if (group.length === 1) {
        await this.executeTool(group[0]);
      } else {
        await Promise.all(group.map((decision) => this.executeTool(decision)));
      }
    }
  },

  // Intelligent timeout management
  calculateDynamicTimeout(toolName: string, complexity: number): number {
    const baseTimeout = 10000;
    const complexityMultiplier = Math.max(1, complexity / 5);
    const toolSpecificMultiplier = this.getToolTimeoutMultiplier(toolName);

    return baseTimeout * complexityMultiplier * toolSpecificMultiplier;
  },
};

๐Ÿ”Œ Integration Examples

Provider Integration

// Integrate with AI providers
export class EnhancedAIProvider {
  private orchestrator: DynamicOrchestrator;

  async generateWithTools(prompt: string, context: any) {
    // Use AI orchestration for tool-enhanced generation
    const toolResult = await this.orchestrator.executeDynamicToolChain(
      `Use available tools to enhance this request: ${prompt}`,
      context,
      { maxIterations: 3, confidenceThreshold: 0.7 },
    );

    // Combine tool results with AI generation
    const enhancedPrompt = `
      Original request: ${prompt}

      Tool-gathered information:
      ${toolResult.finalResult}

      Provide a comprehensive response using this information.
    `;

    return await this.baseProvider.generate({
      input: { text: enhancedPrompt },
    });
  }
}

Workflow Automation

// Automate complex business workflows
class BusinessWorkflowOrchestrator {
  async processCustomerRequest(request: CustomerRequest) {
    const workflowPrompt = `
      Customer request: ${request.description}
      Customer tier: ${request.customerTier}
      Priority: ${request.priority}

      Process this request following our standard workflow:
      1. Validate customer information
      2. Check service availability
      3. Generate quote or solution
      4. Create follow-up tasks
      5. Send confirmation to customer
    `;

    return await this.orchestrator.executeDynamicToolChain(
      workflowPrompt,
      {
        customerId: request.customerId,
        userPermissions: ["customer-service", "pricing"],
        workflowId: generateWorkflowId(),
      },
      {
        maxIterations: 10,
        plannerType: "ai-model",
        confidenceThreshold: 0.8,
      },
    );
  }
}

STATUS: Production-ready AI orchestration system enabling sophisticated dynamic tool selection and workflow automation. Provides enterprise-grade AI-driven decision making with comprehensive monitoring and customization capabilities.